查找最小的k个元素

题目:输入n个整数,输出其中最小的k个。
例如输入123456788个数字,则最小的4个数字为1234
分析:这道题最简单的思路莫过于把输入的n个整数排序,这样排在最前面的k个数就是最小的k个数。只是这种思路的时间复杂度为O(nlogn)。我们试着寻找更快的解决思路。
我们可以开辟一个长度为k的数组。每次从输入的n个整数中读入一个数。如果数组中已经插入的元素少于k个,则将读入的整数直接放到数组中。否则长度为k的数组已经满了,不能再往数组里插入元素,只能替换了。如果读入的这个整数比数组中已有k个整数的最大值要小,则用读入的这个整数替换这个最大值;如果读入的整数比数组中已有k个整数的最大值还要大,则读入的这个整数不可能是最小的k个整数之一,抛弃这个整数。这种思路相当于只要排序k个整数,因此时间复杂可以降到O(n+nlogk)。通常情况下k要远小于n,所以这种办法要优于前面的思路。
这是我能够想出来的最快的解决方案。不过从给面试官留下更好印象的角度出发,我们可以进一步把代码写得更漂亮一些。从上面的分析,当长度为k的数组已经满了之后,如果需要替换,每次替换的都是数组中的最大值。在常用的数据结构中,能够在O(1)时间里得到最大值的数据结构为最大堆。因此我们可以用堆(heap)来代替数组。
另外,自己重头开始写一个最大堆需要一定量的代码。我们现在不需要重新去发明车轮,因为前人早就发明出来了。同样,STL中的setmultiset为我们做了很好的堆的实现,我们可以拿过来用。既偷了懒,又给面试官留下熟悉STL的好印象,何乐而不为之?
参考代码:
#include <set>
#include <vector>
#include <iostream>
using namespace std;
typedef multiset<
int, greater<int> >  IntHeap;
///
// find k least numbers in a vector
///
void FindKLeastNumbers
(
      const vector<int>& data,               // a vector of data
      IntHeap& leastNumbers,                 // k least numbers, output
      unsigned int k                              
)
{
      leastNumbers.clear();

      if(k == 0 || data.size() < k)
            return;
      vector<int>::const_iterator iter = data.begin();
      for(; iter != data.end(); ++ iter)
      {
            // if less than k numbers was inserted into leastNumbers
            if((leastNumbers.size()) < k)
                  leastNumbers.insert(*iter);

            // leastNumbers contains k numbers and it's full now
            else
            {
                  // first number in leastNumbers is the greatest one
                  IntHeap::iterator iterFirst = leastNumbers.begin();
                  // if is less than the previous greatest number 
                  if(*iter < *(leastNumbers.begin()))
                  {
                        // replace the previous greatest number
                        leastNumbers.erase(iterFirst);
                        leastNumbers.insert(*iter);
                  }
            }
      }
}

 

您好,关于Python实现查找最小的k个数,我可以提供以下两种常见的方法: 方法一:使用堆 将数组前k个元素建立小根堆,然后遍历剩余元素,若比堆顶元素小,则将其加入堆中,同时将堆顶元素删除,最终堆中的k个元素即为所求。具体代码如下: import heapq def find_k_min(nums, k): if not nums or k <= 0 or k > len(nums): return None res = [] for i in range(k): heapq.heappush(res, nums[i]) for i in range(k, len(nums)): if nums[i] < res[0]: heapq.heappop(res) heapq.heappush(res, nums[i]) return res 方法二:使用快排的思想 使用快排的思想,每次选择一个基准元素,将小于基准元素的放在左边,大于等于基准元素的放在右边,然后判断基准元素的位置,若该位置等于k-1,则基准元素以及左边的元素就是所求;若该位置小于k-1,则在右半边继续查找;若该位置大于k-1,则在左半边继续查找。具体代码如下: def find_k_min(nums, k): if not nums or k <= 0 or k > len(nums): return None left, right = 0, len(nums)-1 while True: index = partition(nums, left, right) if index == k-1: return nums[:k] elif index < k-1: left = index + 1 else: right = index - 1 def partition(nums, left, right): pivot = nums[left] while left < right: while left < right and nums[right] >= pivot: right -= 1 nums[left] = nums[right] while left < right and nums[left] < pivot: left += 1 nums[right] = nums[left] nums[left] = pivot return left 希望能对您有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值