学习PCl点云

6人阅读 评论(0) 收藏 举报
分类:

1、点云格式转化:

 从.ASC 到 .pcd 直接在文件开头 加上pcd格式的文件头

# .PCD v0.7 - Point Cloud Data file format
VERSION 0.7
FIELDS x y z
SIZE 4 4 4
TYPE F F F
COUNT 1 1 1
WIDTH xxxxxx     // 实际的点云数
HEIGHT 1
VIEWPOINT 0 0 0 1 0 0 0
POINTS xxxxxxx     // 实际的点云数

DATA ascii 

...     .....    ......

2、利用RANSAC  平面拟合 

#include <iostream>
#include <pcl/ModelCoefficients.h>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/segmentation/sac_segmentation.h>


int
main(int argc, char** argv)
{
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
pcl::PCDReader reader;
reader.read("3d_data5.pcd", *cloud);
//std::cout << "第一个点的X坐标是 " << cloud->points[1].x << std::endl;
std::cout << "PointCloud before filtering has: " << cloud->points.size() << " data points." << std::endl;


//// Fill in the cloud data
//cloud->width = 15;
//cloud->height = 1;
//cloud->points.resize(cloud->width * cloud->height);


//// Generate the data
//for (size_t i = 0; i < cloud->points.size(); ++i)
//{
// cloud->points[i].x = 1024 * rand() / (RAND_MAX + 1.0f);
// cloud->points[i].y = 1024 * rand() / (RAND_MAX + 1.0f);
// cloud->points[i].z = 1.0;
//}


//// Set a few outliers
//cloud->points[0].z = 2.0;
//cloud->points[3].z = -2.0;
//cloud->points[6].z = 4.0;


//std::cerr << "Point cloud data: " << cloud->points.size() << " points" << std::endl;
//for (size_t i = 0; i < cloud->points.size(); ++i)
// std::cerr << "    " << cloud->points[i].x << " "
// << cloud->points[i].y << " "
// << cloud->points[i].z << std::endl;


pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients);      // 定义系数对象
pcl::PointIndices::Ptr inliers(new pcl::PointIndices);     
// Create the segmentation object
pcl::SACSegmentation<pcl::PointXYZ> seg;
// Optional
seg.setOptimizeCoefficients(true);
// Mandatory
seg.setModelType(pcl::SACMODEL_PLANE);
seg.setMethodType(pcl::SAC_RANSAC);
seg.setDistanceThreshold(0.01);


seg.setInputCloud(cloud);
seg.segment(*inliers, *coefficients);


if (inliers->indices.size() == 0)
{
PCL_ERROR("Could not estimate a planar model for the given dataset.");
return (-1);
}


std::cerr << "Model coefficients: " << coefficients->values[0] << " "
<< coefficients->values[1] << " "
<< coefficients->values[2] << " "
<< coefficients->values[3] << std::endl;
std::cout << "平面方程为:" << coefficients->values[0] <<"X +" << coefficients->values[1]<< "Y +" << coefficients->values[2]<<"Z +"
                        <<coefficients->values[3] <<"= 0 " << std::endl;


std::cerr << "Model inliers: " << inliers->indices.size() << std::endl;
/*for (size_t i = 0; i < inliers->indices.size(); ++i)
std::cerr << inliers->indices[i] << "    " << cloud->points[inliers->indices[i]].x << " "
<< cloud->points[inliers->indices[i]].y << " "
<< cloud->points[inliers->indices[i]].z << std::endl;
*/
return (0);
}

查看评论

机器学习之k近邻学习器和降维与度量学习

降维,高纬度数据转化为低纬度的数据,主要是属性变化。本课程主要讲解:k近邻学习器、低维嵌入、主成成分分析、核化线性降维、流行学习、度量学习。
  • 2018年01月15日 02:13

PCL学习之获取点云

刚入门学习PCL点云库,有些基础东西比较茫然。比如已经存在由RGB-D sensor获取的rgb image和depth image,如何将其转化为点云。下面,以比较通用的点云类型pcl::Point...
  • u013207865
  • u013207865
  • 2015-10-09 10:08:42
  • 3154

PCL点云程序学习

这是本人写的第一篇博客,对PLC程序进行了初步了解,如有不正确的地方还请提出,下面则是我对PLC的初步理解和学习 1.下面编辑一段简单的代码cloud_viewer_PointXYZ.cpp,将其在...
  • shengxiamei
  • shengxiamei
  • 2015-07-23 16:01:44
  • 6606

点云库PCL学习教程PDF完整版

  • 2017年08月04日 17:01
  • 48B
  • 下载

点云库PCL学习教程 完整版

  • 2017年11月14日 09:08
  • 78.99MB
  • 下载

点云库pcl学习教程 高清完整.pdf版

  • 2015年08月21日 23:52
  • 37.4MB
  • 下载

《PCL点云库学习&VS2010(X64)》Part 8 PCL1.72(VTK6.2.0)可视化例程

Part 8 PCL1.72(VTK6.2.0)可视化例程                                                                       ...
  • sinat_24206709
  • sinat_24206709
  • 2016-06-06 19:43:20
  • 3638

65.[PCL]点云及PCL基础

介绍点云及PCL的基础。
  • a464057216
  • a464057216
  • 2017-01-22 17:43:03
  • 687

点云库PCL学习教程代码资源(全-适用于PCL1.7及以前版本)

  • 2016年12月16日 14:59
  • 9.82MB
  • 下载

点云库PCL学习教程3 最后一部分

  • 2014年10月27日 22:12
  • 45MB
  • 下载
    个人资料
    等级:
    访问量: 167
    积分: 42
    排名: 189万+
    文章存档