chapter03_垃圾收集器与内存分配策略_6_内存分配与回收策略

  • 对象优先在新生代的Eden区(8的那个)分配

    当Eden区没有足够空间时,会进行一次Minor GC

  • (1) Minor GC

    发生在新生代的GC,比较频繁,回收速度也比较快

    (2) Full GC

    发生在新生代和老年代的GC,回收频率低,回收一次比较慢(Minor GC的10倍以上)

  • 大对象直接进入老年代

    否则,它们如果进入新生代,使用了复制算法的时候,复制大对象一次的消耗太大

  • 长期存活的对象进入老年代

    如果一些对象,本来是在新生代,历经多次Minor GC而没有被回收,那么它们每次被回收时age++,当age超过阈值时就进入老年代

  • 空间分配担保

    如果不采用冒险策略,那么在发生Minor GC之前,JVM会检查一下老年代的__最大连续可用空间__是否大于新生代所有对象总空间:

    如果大于,说明新生代的复制回收算法无风险;

    如果小于,那就先进行一次Full GC,清理一下老年代,然后再Minor GC;

    如果采取冒险策略,那么不管老年代空间够不够,都进行新生代的Minor GC,赌一把试试

内容概要:本文详细介绍了一个基于Python实现的锂电池剩余寿命(RUL)预测项目,采用Transformer-LSTM混合深度学习模型,结合GUI界面实现智能化预测可视化分析。项目涵盖从数据生成、特征工程、模型构建(Transformer自注意力机制LSTM时序建模融合)、训练优化、性能评估到实际部署的全流程。通过滑动窗口采样、数据归一化、多维度评估指标(MSE、MAE、R²、RMSE、MAPE)及残差分析,确保模型高精度鲁棒性。同时集成注意力权重LSTM隐状态可视化功能,提升模型可解释性,并设计了完整的GUI交互系统,支持数据加载、模型热插拔推理预测结果动态展示。; 适合人群:具备一定Python编程基础和深度学习知识,熟悉PyTorch框架的数据科学从业者、研究生及从事新能源、智能制造、电池管理系统开发的工程师。; 使用场景及目标:①应用于新能源汽车、储能电站、消费电子等领域的电池健康管理;②实现锂电池剩余寿命的高精度动态预测,支持智能运维故障预警;③为科研人员提供可复现、可扩展的深度学习时序建模实例,推动电池寿命预测技术的工程化落地。; 阅读建议:建议读者结合代码文档逐步实践,重点关注数据预处理、模型结构设计GUI集成部分,尝试在本地环境中运行并调试程序,深入理解TransformerLSTM协同工作机制,同时可扩展多模态输入或轻量化部署以适应更多应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值