Solution 1
根据数据结构的功能,可以基本判定其内部实现是一个前缀树,可以使用 0208. Implement Trie (Prefix Tree) 作为基础。
但是本题额外引入了一个通配符,一个通配符对应一个字符位,因此我们需要通过DFS枚举搜索。
本题在实现中遇到了一个奇怪的剪枝优化:如果当前搜索位不是通配符,仍然需要对枚举结果进行判定。否则会出现TLE的问题(实测是OJ的耗时玄学……)
- 时间复杂度: O ( R N ) O(R^{N}) O(RN),其中 N N N为查询字符的长度, R R R为基数。最坏情况下所有的搜索位都是通配符,全展开搜索。本题条件将通配符数量限制到3,因此实际为 O ( N ) O(N) O(N)
- 空间复杂度: O ( M N ) O(MN) O(MN),其中 N N N为查询字符的长度, M M M为输入的字符串个数。DFS的搜索占用仅需要一个 O ( N ) O(N) O(N)
class Trie {
private:
vector<Trie*> next;
const int R = 26;
bool isEnd;
public:
Trie() {
next = vector<Trie*>(this->R);
isEnd = false;
}
void insert(string word) {
auto node = this;
for (char c: word) {
if (node->next[c - 'a'] == nullptr) {
// 不存在,直接插入
node->next[c - 'a'] = new Trie();
}
node

本题要求设计一个数据结构,实现添加单词和搜索带有通配符的单词功能,其核心是前缀树。解决方案1中,利用前缀树基础并考虑通配符,通过DFS枚举搜索。一个关键优化是,即使当前搜索位非通配符,仍需判定,否则可能导致超时。时间复杂度为O(RN),空间复杂度为O(MN)。
最低0.47元/天 解锁文章

281

被折叠的 条评论
为什么被折叠?



