求解非线性优化问题的拉格朗日乘子法和KKT条件(常用于信息经济学中)
优化问题的解法(1)无约束的优化问题min f(x);解法:直接令一阶倒等于0(只是充分条件,还需要验证f的凹凸性)(2)只含有等式约束的优化问题min f(x)s.t. g(x)=0解法:拉格朗日乘子法步骤一:定义拉格朗日函数 L(x,λ)=f(x)+λg(x),其中λ 为拉格朗日乘子步骤二:对所有的变量和拉格朗日乘子求导并令其等于0,即∂L/∂x=0, ∂L/∂λ=g(x)=0,然后求出x∗ 以及λ的值。(也是充分条件)(3)含有不等式约束的优化问题min f(x)s.t.






