母牛的故事(递归或迭代实现)

D - 母牛的故事
Crawling in process... Crawling failed Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Description

Input

Output

Sample Input

Sample Output

Hint

Description

有一头母牛,它每年年初生一头小母牛。每头小母牛从第四个年头开始,每年年初也生一头小母牛。请编程实现在第n年的时候,共有多少头母牛?

Input

输入数据由多个测试实例组成,每个测试实例占一行,包括一个整数n(0<n<55),n的含义如题目中描述。
n=0表示输入数据的结束,不做处理。

Output

对于每个测试实例,输出在第n年的时候母牛的数量。
每个输出占一行。

Sample Input

2
4
5
0

Sample Output

2
4
6

根据题意,先列出前几年的牛头数,试着找找规律:

n年:

n=1

n=2

n=3

n=4

n=5

n=6

n=7

n=8

n=9

fn头牛?

f1=1

f2=2

f3=3

f4=4

f5=6

f6=9

f7=13

f8=19

f9=28

我们可以得出这样一个公式:fn=fn-1+fn-3
  再理解一下,fn-1是前一年的牛,第n年仍然在,fn-3是前三年那一年的牛,但换句话说也就是第n年具有生育能力的牛,也就是第n年能生下的小牛数。
  编程序,求解这个公式就行了。
  当然,第1-3年的数目,需要直接给出。
  很像斐波那契数列,有不一样之处,道理、方法一样。其实,在编程之前,讲究先用这样的方式建模。
//解法1:迭代解法  
#include <iostream>  
using namespace std;  
int main()  
{  
    int n,i;  
    int f1, f2, f3, fn;  
    while(cin>>n&&n!=0)  
    {  
        //下面求第n年有几头牛  
        f1=1;  
        f2=2;  
        f3=3;  
        if(n==1)  
            cout<<f1<<endl;  
        else if(n==2)  
            cout<<f2<<endl;  
        else if(n==3)  
            cout<<f3<<endl;  
        else  
        {  
            for(i=4; i<=n; i++)  
            {  
                fn=f3+f1;  
                f1=f2;  //f1代表前3年  
                f2=f3;  //f2代表前2年  
                f3=fn;  //f3代表前1年  
            }  
            cout<<fn<<endl;  
        }  
    }  
    return 0;  
}  

[cpp] view plain copy print?在CODE上查看代码片派生到我的代码片
//解法2:定义递归函数(效率低,不建议用)  
#include <iostream>  
using namespace std;  
int f(int n);  
int main()  
{  
    int n;  
    while(cin>>n&&n!=0)  
    {  
        cout<<f(n)<<endl;  
    }  
    return 0;  
}  
  
  
int f(int n)  
{  
    if(n<4)  
        return n; //第1,2,3年,各为1,2,3头  
    else  
        return f(n-1)+f(n-3);  //第n年为前一年的和前3年的相加  
}  


阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页