一.实验目的
分别使用Excel、SPSS和Python软件做区间估计,探究哪种软件可以实现哪几种区间估计。
二.实验内容
参数的点估计给出了一个具体的数值,但其精度如何,点估计本身无法给出回答。在实际中,度量一个点估计的精度最直观的方法是给出未知参数的一个区间。
1. 区间估计的概念
设 是总体的一个参数, 是样本,在得到样本观测值后,把 估计在区间 内。由于样本的随机性,区间 盖住未知参数 的可能性并不确定,通常要求这个区间盖住 的概率越大越好,但这必然导致区间长度增大,使得估计的精度降低,为了解决这种矛盾,引入了置信区间的概念。即在置信度为 条件下,寻找精度最高的区间估计。
2. 定义
设 是总体的一个参数,其参数空间为 , 是来自该总体的样本,对给定的一个 ,假设有两个统计量 和 ,若对任意的 ,有
则称随机区间 为 的置信水平为 的置信区间, 和 分别为置信下限和置信上限。
3. 枢轴量法
构造未知参数 的置信区间的最常用的方法是枢轴量法,其步骤可以分为:
⑴设法构造一个样本和 的函数G,使得G的分布不依赖于未知参数。
⑵适当地选取两个常数c和d,使对给定的 ,有
⑶把 解出来。
4. 单个正态总体参数的置信区间
⑴ 已知时 的置信区间
枢轴量可选为 ,置信区间为
⑵ 未知时 的置信区间
统计量为 ,置信区间为
⑶ 的置信区间
统计量为 ,置信区间为
5. 两个正态总体下的置信区间
设 是来自 的样本, 是来自 的样本,且这两个样本相互独立。
⑴ 的置信区间
① 和 已知时
此时有
取统计量为
的 置信区间为:
② 未知时
此时有 ,
取统计量为
记 ,则 的置信区间为
③ 已知时
选取统计量为
记 ,
的 置信区间为:
⑵ 的置信区间
由于 ,且 和 相互独立
选取的统计量为
对给定的置信水平 ,由
置信区间为
6. 配对样本t检验
三.实验过程
1. 已知时 的置信区间
考虑下面一个案例
随机从一批苗木中抽取16株,测得其高度(单位:m)为:
1.14 1.10 1.13 1.15 1.20 1.12 1.17 1.19 1.15 1.12 1.14 1.20 1.23 1.11 1.14 1.16
设苗的高度服从正态分布,求总体均值 的0.95的置信区间。( )
I使用Excel
步骤:1.录入数据
2.计算均值,标准差,方差,分别如下
均值:=AVERAGE(A1:A16)
样本标准差:=STDEV(A1:A16)
总体标准差:=STDEVP(A1:A16)
样本方差:=VAR(A1:A16)
总体方差:=VARP(A1:A16)
3.计算置信下限和置信上限
置信下限:=B2-NORMSINV(1-0.5*0.05)*0.01/SQRT(COUNT(A1:A16)
置信上限=B2+NORMSINV(1-0.5*0.05)*0.01/SQRT(COUNT(A1:A16)
保留小数位:按住Ctrl键,可以选中多个目标框,在设置单元格格式的数值中进行修改。
置信区间为:(1.148,1.158).
在Excel中也可以利用CONFIDENCE(alpha,standard_dev,size)函数来计算正态总体方差已知情况下的置信区间:该函数的返回值等于 。
II使用SPSS
利用SPSS的Explore过程求置信区间时,SPSS运用的是t分布函数,而不是标准正态分布函数。因此,与 已知与否无关。
III使用Python
2. 未知时 的置信区间
I使用Excel
置信下限:=B2-TINV(0.5*0.05,COUNT(A1:A16)-1)*C2/SQRT(COUNT(A1:A16))
置信上限:
=B2+TINV(0.5*0.05,COUNT(A1:A16)-1)*C2/SQRT(COUNT(A1:A16))
置信区间为:(1.1304276,1.1758224).
注意:在Excel中,区间估计为
II使用SPSS
输出结果:
所以,总体均值 的0.95的置信区间[1.1337,1.1726].
III使用Python
3. 的置信区间
I使用Excel
置信下限:
=(COUNT(A1:A16)-1)*D2/CHIINV(0.5*0.05,COUNT(A1:A16))