Hadoop join之map side join

本次我们采用在map端进行两表间的join。Reduce side join是非常低效的,因为shuffle阶段要进行大量的数据传输。Map side join是针对以下场景进行的优化:两个待连接表中,有一个表非常大,而另一个表非常小,以至于小表可以直接存放到内存中。这样,我们可以将小表复制多份,让每个map task内存中存在一份(比如存放到hash table中),然后只扫描大表:对于大表中的每一条记录key/value,在hash table中查找是否有相同的key的记录,如果有,则连接后输出即可。为了支持文件的复制,Hadoop提供了一个类DistributedCache,使用该类的方法如下:

(1)用户使用静态方法DistributedCache.addCacheFile()指定要复制的文件,它的参数是文件的URI(如果是HDFS上的文件,可以这样:hdfs://jobtracker:50030/home/XXX/file)。

JobTracker在作业启动之前会获取这个URI列表,并将相应的文件拷贝到各个TaskTracker的本地磁盘上。

(2)用户使用DistributedCache.getLocalCacheFiles()方法获取文件目录,并使用标准的文件读写API读取相应的文件。


本实例中的运行参数需要三个,加入在hdfs中有两个目录input和input2,其中input存放user.csv,input2存放order.csv.


public class JoinInMapper extends Configured implements Tool{
	public static class MapClass extends Mapper<LongWritable, Text, Text, Text>{
		private Map<String, String> users = new HashMap<String, String>();
		private Text Key = new Text();
		private Text Value = new Text();

		public void configure(JobConf job){
			BufferedReader in = null;
			try{
				Path[] paths = DistributedCache.getLocalCacheFiles(job);
				String user = null;
				String[] userInfo = null;

				for(Path path : paths){
					if (path.toString().contains("user.csv")){
						in = new BufferedReader(new FileReader(path.toString()));
						while ((user = in.readLine()) != null) {
							userInfo = user.split(",", 2);
							users.put(userInfo[0], userInfo[1]);
						}
					}
				}
			} catch (IOException e){
				e.printStackTrace();
			}
		}

		public void map(LongWritable key, Text value, Context context) throws IOException{
			String[] order = value.toString().split(",");
			String user = users.get(order[0]);

			if(user != null){
				Key.set(user);
				Value.set(order[1]);
				context.write(Key, Value);
			}
		}
	}

	public int run(String[] args) throws Exception{
		Configuration conf = getConf();
		Job job = new Job(conf, "JoinInMapper");

		job.setJarByClass(JoinInMapper.class);
		job.setMapperClass(MapClass.class);
		job.setNumReduceTasks(0);

		job.setInputFormat(TextInputFormat.class);
		job.setOutputFormat(TextOutputForamt.class);

		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(Text.class);

		DistributedCache.addCacheFile(new Path(args[0]).toUri(), job);
		FileInputFormat.setInputPaths(job, new Path(args[1]));
		FileOutputFormat.setOutputPath(job, new Path(args[2]));

		JobClient.runJob(job);

		return 0;
	}

	public static void main(String[] args) throws Exception{
		int res = ToolRunner.run(new Configuration(), new JoinInMapper(), args);
		System.exit(res);
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值