模糊神经网络-PID Smith预估集成控制系统

MATLAB 同时被 2 个专栏收录
713 篇文章 21 订阅
20 篇文章 0 订阅

对模糊神经网络PID-Smith预估控制(图中简称FNN+Smith)和传统的PID控制方法进行比较。被控对象模型中=10,即Smith预估器模型与被控对象完全匹配时,仿真结果如图5.8所示。

 

5.8 模型匹配时系统的阶跃响应曲线

Fig.5.8 Step Response of the System When Model Matches

通过比较可以看出,常规PID控制响应慢,超调较大,调节时间长,这是由于比例、积分和微分个时间常数相互制约,无法达到最优组合而造成的;模糊神经网络PID-Smith预估控制则克服了PID控制的缺点,具有非常好的动态性能指标和稳态性能指标,能够较快稳定,并且没有超调和振荡。

2)系统跟随性分析

Smith预估器模型与被控对象完全匹配时,在系统稳定的情况后,设定在37s时,加入幅值为100的阶跃信号,仿真结果如图5.9所示。

 

5.9 系统跟踪性仿真曲线

Fig.5.9 System Traceability of Simulation Curve

可以看出模糊神经网络PID-Smith预估控制能够很好的跟踪输入信号。

3)系统抗扰性分析

在系统跟踪阶跃信号的过程中,在时间秒的时候受到外界幅值为40的干扰信号,系统输出的响应曲线如5.10示。

 

5.10系统受扰动时的阶跃响应

Fig.5.10 Step Response of The System with Disturbance

由图5.10中可以看出,系统输出在出现扰动后能够很快再次回到设定值,说明系统具有较好的抑制扰动的能力。

加入随机干扰信号,即加入强度为40,采样时间为1秒的白噪声时系统响应曲线如图5.11

 

5.11 系统受随机扰动时的阶跃响应

Fig.5.11 Step Response of The System with Random Disturbance

4)系统参数发生变化时的鲁棒性分析

由于被控对象的发生变化,PID控制不能取得很好的控制效果,这里用PID-Smith预估控制和本章提出的模糊神经PID-Smith预估控制作比较。

被控对象模型中,滞后时间发生变化,Smith预估模型与被控对象不能完全匹配时,仿真结果如图5.12所示。

 

5.12 时滞改变时的仿真曲线

Fig.5.12 Simulation Curve When Delay Changes

被控对象模型中K=7T=16=10,即增益发生变化,Smith预估模型与被控对象不能完全匹配时,仿真结果如图5.13所示。

 

5.13 增益发生改变时的仿真曲线

Fig.5.13 Simulation Curve When Gain changes

被控对象模型中K=5T=13=10,即惯性时间常数发生变化,Smith预估模型与被控对象不能完全匹配时,仿真结果如图5.14所示。

 

5.14 惯性时间常数改变时的仿真曲线

Fig.5.14 Simulation Curve When Inertial Parameter Changes

被控对象模型中,即模型参数都发生变化,Smith预估模型与被控对象不能完全匹配时,分别采用传统PID控制和本文提出的基于模糊神经网络整定的PID控制进行仿真,仿真结果如图5.15所示。

从以上仿真曲线和性能指标可以看出,当被控对象参数发生变化时,即Smith预估模型不能和被控对象模型相匹配时,PID-Smith控制效果明显变差,系统的输出振荡加大,超调变大,调节时间变长,而本文设计的模糊神经网络PID-Smith预估控制的超调小、无振荡现象,而且调节时间也短,控制效果明显优于传统PID-Smith预估控制。

 

5.15 三个参数均改变时的仿真曲线

Fig.5.15 Simulation Curve when the three parameters change together

  1. 本章小结

传统的Smith预估器是基于被控对象精确数学模型而设计的,对于缺乏精确模型或参数时变且具有滞后的过程控制系统,控制效果不佳。针对带钢喷气冷却过程中的大滞后、被控对象参数时变、非线性的特点,采用RBF模糊神经网络整定PID-Smith预估控制方法,使系统同时具有自整定PID参数和纯滞后补偿的能力,即克服了传统的Smith控制依赖被控对象的精确数学模型的特点,又结合了RBF模糊神经网络整定PID控制对参数变化的自适应的优点,在MATLAB的模糊逻辑工具箱和SMILINK下建立RBF模糊神经网络整定PID-Smith集成控制的过程,对具有纯滞后、参数时变的带钢喷气冷却控制系统进行了仿真,取得了满意的控制效果。

  • 5
    点赞
  • 1
    评论
  • 18
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值