【GMM+KDE】基于MATLAB的GMM和KDE核估计得目标跟踪仿真

1616 篇文章 1684 订阅
本文介绍了基于MATLAB的GMM(高斯混合模型)和KDE(核密度估计)的目标跟踪仿真。GMM用于逼近变量的概率密度函数,常用于模式识别。KDE是一种非参数密度估计方法,适用于任意形状的密度函数估计。通过双树递归算法降低KDE计算复杂度。文中提供部分源码,并展示了仿真效果。
摘要由CSDN通过智能技术生成

1.软件版本

matlab2013b

2.本算法理论知识

GMM

       GMM是一种利用一定数量的小高斯函数混合逼近某变量的概率密度函数的方法,是在概率估计中常用的参数化模型,今年被广泛应用于模式识别领域。

    一有限的GMM的描述非常简单,即由高新分布函数的任何凸组合形成一混合模型。对于n维实空间的随机变量x,利用GMM可以近似的表示其概率密度函数:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值