1.软件版本
matlab2013b
2.本算法理论知识
GMM
GMM是一种利用一定数量的小高斯函数混合逼近某变量的概率密度函数的方法,是在概率估计中常用的参数化模型,今年被广泛应用于模式识别领域。
一有限的GMM的描述非常简单,即由高新分布函数的任何凸组合形成一混合模型。对于n维实空间的随机变量x,利用GMM可以近似的表示其概率密度函数:
![]()
本文介绍了基于MATLAB的GMM(高斯混合模型)和KDE(核密度估计)的目标跟踪仿真。GMM用于逼近变量的概率密度函数,常用于模式识别。KDE是一种非参数密度估计方法,适用于任意形状的密度函数估计。通过双树递归算法降低KDE计算复杂度。文中提供部分源码,并展示了仿真效果。
matlab2013b
GMM是一种利用一定数量的小高斯函数混合逼近某变量的概率密度函数的方法,是在概率估计中常用的参数化模型,今年被广泛应用于模式识别领域。
一有限的GMM的描述非常简单,即由高新分布函数的任何凸组合形成一混合模型。对于n维实空间的随机变量x,利用GMM可以近似的表示其概率密度函数:
![]()
949
1147

被折叠的 条评论
为什么被折叠?