目录
一、理论基础
对于 Kth -Markov 模型,常见的建模算法依次扫描每条会话 记录,提取所有长度为 K 的子序列(也称其为状态),同时记录 子序列的下一转移结点,累计发生该转移的计数值。通常采用 矩阵表示。最后,通过计算,将计数值转换为转移概率,形成转 移概率矩阵。预测算法执行时,首先查找与当前用户访问序列 的 K 个后缀相匹配的状态,该状态对应的具有最大转移概率的 转移页面即为预测值。
根据序列,通过MATLAB编程(func_transition_matrix.m)得到其概率转移矩阵:
然后,做如下的假设