目录
一、理论基础
对于 Kth -Markov 模型,常见的建模算法依次扫描每条会话 记录,提取所有长度为 K 的子序列(也称其为状态),同时记录 子序列的下一转移结点,累计发生该转移的计数值。通常采用 矩阵表示。最后,通过计算,将计数值转换为转移概率,形成转 移概率矩阵。预测算法执行时,首先查找与当前用户访问序列 的 K 个后缀相匹配的状态,该状态对应的具有最大转移概率的 转移页面即为预测值。
根据序列,通过MATLAB编程(func_transition_matrix.m)得到其概率转移矩阵:

然后,做如下的假设

该博客研究了一阶离散Markov模型在Web用户行为预测中的应用,通过MATLAB编程建立模型并进行仿真。与随机序列模型对比,离散Markov模型在预测准确率上表现更优,可用于提升网络服务效率和个性化推荐。
订阅专栏 解锁全文
690

被折叠的 条评论
为什么被折叠?



