旷视科技面试——算法岗

本文分享了旷视科技算法岗位的面试经验,包括一面的deeplab模型、CRF后处理、批量归一化等深度学习相关问题,二面的模型改进和实际业务问题,以及三面的深度学习基础和项目挑战。面试涵盖了理论知识、实践经验和代码能力的考察。
摘要由CSDN通过智能技术生成

目录

一面

二面

三面


旷视科技面试——算法岗

        首先,旷视科技是一家专注于人工智能和深度学习领域的公司。在面试过程中,通常会对面试试题进行分类,以匹配不同领域的专业知识要求。以下是一份针对旷视科技算法岗位的面试经验介绍。

一面:

1.自我介绍:在这一环节中,面试者需要简要介绍自己的背景、经验、技能和研究方向。

2.详细介绍下deeplab模型与其它state of art的模型对比:需要详细了解deeplab模型的原理、特点、性能和应用,并能够将其与其他state of art的模型进行对比分析。

3.CRF后处理的目的:需要了解CRF后处理的原理和目的,并能够分析其在图像分割任务中的作用。

4.什么是BN(批量归一化):需要了解BN的原理、作用和应用场景,并能够分析其在深度学习模型中的应用效果。

5.多标签分类问题如何解决?从损失函数角度考虑:需要了解多标签分类问题的特点、解决方法和优化技巧,并能够从损失函数角度出发,给出相应的解决方案。

6.旷视科技有一个图像描述的项目,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值