
目录
旷视科技面试——算法岗
首先,旷视科技是一家专注于人工智能和深度学习领域的公司。在面试过程中,通常会对面试试题进行分类,以匹配不同领域的专业知识要求。以下是一份针对旷视科技算法岗位的面试经验介绍。
一面:
1.自我介绍:在这一环节中,面试者需要简要介绍自己的背景、经验、技能和研究方向。
2.详细介绍下deeplab模型与其它state of art的模型对比:需要详细了解deeplab模型的原理、特点、性能和应用,并能够将其与其他state of art的模型进行对比分析。
3.CRF后处理的目的:需要了解CRF后处理的原理和目的,并能够分析其在图像分割任务中的作用。
4.什么是BN(批量归一化):需要了解BN的原理、作用和应用场景,并能够分析其在深度学习模型中的应用效果。
5.多标签分类问题如何解决?从损失函数角度考虑:需要了解多标签分类问题的特点、解决方法和优化技巧,并能够从损失函数角度出发,给出相应的解决方案。
6.旷视科技有一个图像描述的项目,
本文分享了旷视科技算法岗位的面试经验,包括一面的deeplab模型、CRF后处理、批量归一化等深度学习相关问题,二面的模型改进和实际业务问题,以及三面的深度学习基础和项目挑战。面试涵盖了理论知识、实践经验和代码能力的考察。
订阅专栏 解锁全文
914

被折叠的 条评论
为什么被折叠?



