目录
1面(1h10min) - 电面
项目
主要是商汤无人车实习的项目,问我比baseline提升15个点,怎么来的。
从数据迭代、backbone、模型修改几个层面上说了下。
挑一两个有意思的优化说说,说了cascade、hdcnn的结构,为什么用这种结构。
项目中出现什么情况,怎么解决的?主要就是说小目标检测的解决方案。
对caffe源码熟悉程度。(我扯了扯源码的底层设计模式,数据流怎么流的,如何添加新层、cuda代码的细节)
开放题
给了一个情景,如何训练模型、调优。(题目很空,主要考察你对深度学习的理解)
根据需求(前向传播时间、模型大小),确定模型和基础网络,跑第一版模型。(举了个栗子)
判断模型是否出现过拟合的情况,来决定下一步的优化方向。
结果分析(confusionMatrix等),分析问题,将论文中的方法套上去,如果没有自己创造。(又举了个栗子)
softmax、多个logistic的各自的优势? 1、类别数爆炸,
本文详细记录了作者在阿里面试的经历,涵盖四轮面试,涉及深度学习、模型优化、特征提取、损失函数、样本处理等多个方面。面试官对项目细节、理论理解及算法应用进行了深入探讨,同时也考察了实际问题解决能力。
订阅专栏 解锁全文
674

被折叠的 条评论
为什么被折叠?



