阿里达摩院——算法面经

本文分享了作者在阿里达摩院的四轮面试经历,包括电面和现场面试,重点讨论了深度学习算法、模型优化、 caffe 源码理解、项目实践经验以及解决实际问题的策略。面试涉及了项目细节、模型设计、优化技巧和开放性问题,展现了深度学习和机器学习领域的核心知识点。
摘要由CSDN通过智能技术生成

目录

1面(1h10min) - 电面

2面(1h30min) - 杭州电面

3面(1h) -电面

4面(50min) - 交叉面


1面(1h10min) - 电面


自我介绍:
项目
主要是商汤无人车实习的项目,问我比baseline提升15个点,怎么来的。
从数据迭代、backbone、模型修改几个层面上说了下。
挑一两个有意思的优化说说,说了cascade、hdcnn的结构,为什么用这种结构。
项目中出现什么情况,怎么解决的?主要就是说小目标检测的解决方案。
对caffe源码熟悉程度。(我扯了扯源码的底层设计模式,数据流怎么流的,如何添加新层、cuda代码的细节)
开放题
给了一个情景,如何训练模型、调优。(题目很空,主要考察你对深度学习的理解)
根据需求(前向传播时间、模型大小),确定模型和基础网络,跑第一版模型。(举了个栗子)
判断模型是否出现过拟合的情况,来决定下一步的优化方向。
结果分析(confusionMatrix等),分析问题,将论文中的方法套上去,如果没有自己创造。(又举了个栗子)
softmax、多个logistic的各自的优势? 1、类别数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值