阿里面试——机器学习岗四个面试案例

本文分享了四位面试者在阿里巴巴机器学习岗位面试中的案例,涵盖自我介绍、机器学习流程、特征工程、算法理解、模型优化、深度学习及半监督学习等多个方面。面试涉及CTR提升、GBDT与XGBoost的区别、K-means的K值选择、Spark实现LR、序列数据建模、个性化推送策略等实际问题。
摘要由CSDN通过智能技术生成

目录

面试案例1

面试案例2

一面

二面

三面

面试案例3

一面

二面 

面试案例4

一面

二面


面试案例1


自我介绍,还是讲的太快TT
我呼吸声音太大了
CTR 人群提升是否感兴趣?
问解决机器学习的步骤?数据清洗-数据变换-训练模型-评估模型(过拟合欠拟合,PR ROC……)
感觉自己说的太磨叽了,那边一直嗯嗯嗯,感觉我有点唠叨?
特征变换做什么?特征处理? 讲了PCA
假设只是做特征工程呢?比如归一化? 讲了归一化 标准化
有哪些算法需要归一化? 树形不需要
为啥?树形对具体值不敏感?
监督学习 GBDT讲了
GBDT与XGBoost区别
那为什么XGBoost泰勒展开? 不知道
非监督学习有哪些? 介绍了Kmeans
怎么选取K值? 手肘法
如何工程进行选取K值?
说了一个没听过的
介绍LR和SVM的区别 balabala 说起来对偶问题
SVM对偶问题介绍一下 从函数间隔 几何间隔开始介绍的 (还是有点墨迹了)
如何用Spark实现LR?我用的Hadoop
可以,我就从MR的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值