目录
面试案例1
自我介绍,还是讲的太快TT
我呼吸声音太大了
CTR 人群提升是否感兴趣?
问解决机器学习的步骤?数据清洗-数据变换-训练模型-评估模型(过拟合欠拟合,PR ROC……)
感觉自己说的太磨叽了,那边一直嗯嗯嗯,感觉我有点唠叨?
特征变换做什么?特征处理? 讲了PCA
假设只是做特征工程呢?比如归一化? 讲了归一化 标准化
有哪些算法需要归一化? 树形不需要
为啥?树形对具体值不敏感?
监督学习 GBDT讲了
GBDT与XGBoost区别
那为什么XGBoost泰勒展开? 不知道
非监督学习有哪些? 介绍了Kmeans
怎么选取K值? 手肘法
如何工程进行选取K值?
说了一个没听过的
介绍LR和SVM的区别 balabala 说起来对偶问题
SVM对偶问题介绍一下 从函数间隔 几何间隔开始介绍的 (还是有点墨迹了)
如何用Spark实现LR?我用的Hadoop
可以,我就从MR的
本文分享了四位面试者在阿里巴巴机器学习岗位面试中的案例,涵盖自我介绍、机器学习流程、特征工程、算法理解、模型优化、深度学习及半监督学习等多个方面。面试涉及CTR提升、GBDT与XGBoost的区别、K-means的K值选择、Spark实现LR、序列数据建模、个性化推送策略等实际问题。
订阅专栏 解锁全文
677

被折叠的 条评论
为什么被折叠?



