腾讯面试——机器学习面试全流程案例

本文详细记录了作者在腾讯的面试经历,涵盖了机器学习、数据库优化、图像处理等多个方面。面试过程中讨论了视网膜分类、迁移学习的应用,以及SQL优化、决策树、CNN等技术。还涉及到了面试技巧和部门实习的相关问题。
摘要由CSDN通过智能技术生成

目录

一面

二面

三面总监面

HR面


一面


自我介绍(还是有点磕磕巴巴
问SQL优化 简历里的有的那句话 扯说加了索引
介绍视网膜分类,迁移学习,为什么用这个
第一部分和第二部分的对比做了吗?图像多少图片?比例是多少
样本少?你怎么解决的?白噪声 opencv中的函数
旋转怎么做的?视网膜检测对于方向不敏感
特征提取怎么做的?DL没做特征提取,说了一下预处理的亮度归一
准确率能到多少?
两个不同思路?VGG改进了什么?(这个问题以后要好好看,结合VGG论文
dropout是怎么调整参数?
问抽样的方式?(这个问题不会
希望负样本少一些怎么做?
抽样怎么做的?扯到bagging
脑电信号项目中 决策树怎么抽样的?除了随机有什么方法
随机抽不会不均匀吗?
情绪分类中CNN比传统的什么区别?
我说精度高一些?
问是否有对决策树调参数
问是今年做的?时间和简历对不上
结果光速打脸 人家查了博客总结 说16年有别的80+%的
一直揪着决策树……问决策树的原理(好好背吧

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值