基于协同过滤推荐算法(Collaborative Filtering Recommendation)的推荐系统matlab仿真

1616 篇文章 1684 订阅
该博客介绍了协同过滤推荐算法的理论基础,包括用户兴趣的表示、评分矩阵、相似度计算和推荐策略。核心程序部分阐述了算法的实现步骤,并通过仿真得出结论,展示随着邻居数目的增加,算法的准确性和多样性提升。
摘要由CSDN通过智能技术生成

目录

一、理论基础

二、核心程序

三、仿真结论


一、理论基础

       协同过滤推荐[(Collaborative Filtering Recommendation)技术,在推荐系统中是最为成功的技术之一。协同过滤,被称为社会过滤或者协作过滤。最早是由Goldberg等学者在1992年提出来的,之后发展快速且广泛。1997年,Varian把推荐系统定义为个性化物品推荐。1999年,Schafer把推荐系统定义为提供单个推荐结果作为一种个性化的方式引导用户在大容量项目中找到自己感兴趣的系统。2000年,Sarwar把推荐系统定义为利用统计技术来解决与目标客户交互时提供商品推荐的系统。协同过滤方法,首先利用用户历史评价的记录,然后构建出用户评分矩阵,并且计算项目或用户之间相似度,最后是采用领域的方法向用户推荐。协同过滤,根据用户的历史喜好信息,计算用户之间的距离,然后对商品的评价进行加权评价值,利用目标用户的最近的邻居用户,预测目标用户对商品的喜好程度,系统根据对商品的喜好程度从而对目标用户进行个性化推荐。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值