目录
一、理论基础
协同过滤推荐[(Collaborative Filtering Recommendation)技术,在推荐系统中是最为成功的技术之一。协同过滤,被称为社会过滤或者协作过滤。最早是由Goldberg等学者在1992年提出来的,之后发展快速且广泛。1997年,Varian把推荐系统定义为个性化物品推荐。1999年,Schafer把推荐系统定义为提供单个推荐结果作为一种个性化的方式引导用户在大容量项目中找到自己感兴趣的系统。2000年,Sarwar把推荐系统定义为利用统计技术来解决与目标客户交互时提供商品推荐的系统。协同过滤方法,首先利用用户历史评价的记录,然后构建出用户评分矩阵,并且计算项目或用户之间相似度,最后是采用领域的方法向用户推荐。协同过滤,根据用户的历史喜好信息,计算用户之间的距离,然后对商品的评价进行加权评价值,利用目标用户的最近的邻居用户,预测目标用户对商品的喜好程度,系统根据对商品的喜好程度从而对目标用户进行个性化推荐。

该博客介绍了协同过滤推荐算法的理论基础,包括用户兴趣的表示、评分矩阵、相似度计算和推荐策略。核心程序部分阐述了算法的实现步骤,并通过仿真得出结论,展示随着邻居数目的增加,算法的准确性和多样性提升。
订阅专栏 解锁全文
894

被折叠的 条评论
为什么被折叠?



