目录
一、理论基础
1.1基于BP神经网络的识别
BP神经网络,即Back Propagation神经网络,其本质是一种基于误差反馈传播的神经网络算法。从结构上讲,BP神经网络是由一个信息的正向传播网络和一个误差的反向传播网络两个模块构成。BP神经网络的基本结构如下图所示:
该博客详细介绍了使用BP、RBF和GRNN神经网络对航迹数据进行聚类仿真的理论基础及核心程序。BP神经网络由输入层、隐含层和输出层构成,通过反向传播修正权值。RBF网络以高斯基函数为隐藏层单元,适用于非线性函数模拟。GRNN基于非线性回归,通过计算概率密度函数进行回归分析。仿真结果显示GRNN的识别性能最佳,达到90%,其次是BP的80%和RBF的70%。
目录
BP神经网络,即Back Propagation神经网络,其本质是一种基于误差反馈传播的神经网络算法。从结构上讲,BP神经网络是由一个信息的正向传播网络和一个误差的反向传播网络两个模块构成。BP神经网络的基本结构如下图所示:
242
2万+
2万+
1万+

被折叠的 条评论
为什么被折叠?