分别使用BP神经网络,RBF神经网络以及GRNN神经网络对航迹数据进行聚类仿真分析

1616 篇文章 1684 订阅
该博客详细介绍了使用BP、RBF和GRNN神经网络对航迹数据进行聚类仿真的理论基础及核心程序。BP神经网络由输入层、隐含层和输出层构成,通过反向传播修正权值。RBF网络以高斯基函数为隐藏层单元,适用于非线性函数模拟。GRNN基于非线性回归,通过计算概率密度函数进行回归分析。仿真结果显示GRNN的识别性能最佳,达到90%,其次是BP的80%和RBF的70%。
摘要由CSDN通过智能技术生成

目录

一、理论基础

         1.1基于BP神经网络的识别

1.2基于RBF神经网络的识别 

1.3基于GRNN神经网络的识别

二、核心程序

三、仿真结论


一、理论基础

1.1基于BP神经网络的识别

       BP神经网络,即Back Propagation神经网络,其本质是一种基于误差反馈传播的神经网络算法。从结构上讲,BP神经网络是由一个信息的正向传播网络和一个误差的反向传播网络两个模块构成。BP神经网络的基本结构如下图所示:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值