基于支持向量机和NSGA-II算法的非晶合金变压器结构优化

1616 篇文章 1684 订阅
本文介绍了基于支持向量机(SVM)和NSGA-II算法对非晶合金变压器结构进行优化的方法。通过预处理样本数据,建立单支持向量机模型,并利用NSGA-II进行参数优化,解决了传统优化方法的局限性。通过有限元模型分析了非晶合金变压器的工作状态,并展示了优化流程和模型效果。
摘要由CSDN通过智能技术生成

目录

一、理论基础

二、核心程序

三、仿真结论


一、理论基础

       支持向量机(Support Vector Machine,SVM)是由Vapnik等人在1995年提出的基于统计学习理论的机器学习方法,它主要是依据有限的样本数据,采用结构风险最小化原则,在模型的复杂性和学习能力之间寻求最佳折衷,以此来获得最好的泛化能力(对未知样本数据预测时的精准度)。它与传统人工神经网络相比,不但结构简单,而且泛化能力得到了提高,在解决小样本、高维数和非线性问题中表现出优异的特性。

所以优化问题转化为 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值