目录
一、理论基础
正交频分复用(OFDM)是一种广泛应用于无线通信系统的多载波调制技术。OFDM信号检测是OFDM系统中的重要问题,它的目的是在多个接收天线上检测出传输的OFDM信号。传统的OFDM信号检测算法通常基于线性检测器,但是它们在高信噪比下表现良好,而在低信噪比下效果不佳。基于深度学习网络的OFDM信号检测算法可以提高检测性能,并且可以适应更广泛的信噪比范围。
基于深度学习网络的OFDM信号检测算法包括以下步骤:
步骤1:数据预处理
首先,需要对接收到的OFDM信号进行预处理。预处理的目的是将接收到的OFDM信号转换为适合于深度学习网络输入的形式。具体来说,预处理包括以下子步骤:
1.1 去除CP
OFDM信号通常采用循环前缀(CP)来抵消符号间干扰。在接收端,需要去除CP,以获得原始OFDM符号。
1.2 进行FFT变换
对于每个OFDM符号,需要进行FFT变换以获得频域上的符号。

本文介绍了基于深度神经网络(DNN)的OFDM信号检测算法,详细阐述了数据预处理、DNN网络设计与训练、以及信号检测的步骤。在预处理阶段,涉及去除循环前缀、FFT变换和归一化;网络设计包括输入层、隐藏层和输出层,采用损失函数和优化器进行训练;信号检测则通过预处理后的OFDM符号进行预测,最终解码得到原始数据。
订阅专栏 解锁全文
158

被折叠的 条评论
为什么被折叠?



