基于DNN网络的OFDM信号检测算法matlab仿真

本文介绍了基于深度神经网络(DNN)的OFDM信号检测算法,详细阐述了数据预处理、DNN网络设计与训练、以及信号检测的步骤。在预处理阶段,涉及去除循环前缀、FFT变换和归一化;网络设计包括输入层、隐藏层和输出层,采用损失函数和优化器进行训练;信号检测则通过预处理后的OFDM符号进行预测,最终解码得到原始数据。
摘要由CSDN通过智能技术生成

目录

一、理论基础

步骤1:数据预处理

步骤2:深度学习网络的设计和训练

步骤3:OFDM信号检测

二、核心程序

三、仿真结论


一、理论基础

       正交频分复用(OFDM)是一种广泛应用于无线通信系统的多载波调制技术。OFDM信号检测是OFDM系统中的重要问题,它的目的是在多个接收天线上检测出传输的OFDM信号。传统的OFDM信号检测算法通常基于线性检测器,但是它们在高信噪比下表现良好,而在低信噪比下效果不佳。基于深度学习网络的OFDM信号检测算法可以提高检测性能,并且可以适应更广泛的信噪比范围。

基于深度学习网络的OFDM信号检测算法包括以下步骤:

步骤1:数据预处理

      首先,需要对接收到的OFDM信号进行预处理。预处理的目的是将接收到的OFDM信号转换为适合于深度学习网络输入的形式。具体来说,预处理包括以下子步骤:

1.1 去除CP

      OFDM信号通常采用循环前缀(CP)来抵消符号间干扰。在接收端,需要去除CP,以获得原始OFDM符号。

1.2 进行FFT变换

       对于每个OFDM符号,需要进行FFT变换以获得频域上的符号。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值