目录
1.MTSP问题概述
多旅行商问题是一种经典的组合优化问题,其目标是找到一组最短的闭合回路路径,使得每个旅行商(车辆或代理人)从一个共同的起始点出发,访问各自分配的一组城市后返回起始点,且所有旅行商的总行驶距离最小。每个城市只被一个旅行商访问一次。
多旅行商问题(Multiple Traveling Salesman Problem, MTSP)是经典的旅行商问题(Traveling Salesman Problem, TSP)的一个扩展。在TSP中,一个旅行商需要访问所有城市并返回起点,目标是找到访问所有城市的最短路径。而在MTSP中,有多个旅行商,每个旅行商需要访问城市集合中的一个子集,并各自返回其出发城市。目标是找到一种分配方式,使得所有旅行商的总行程最短。
MTSP问题可以进一步细分为不同的类型,取决于旅行商的起始点和终止点:
单仓库多旅行商问题:所有旅行商从同一个城市(即仓库)出发,访问不同的城市子集后返回到该城市。
多仓库多旅行商问题(Multi-Depot MTSP):旅行商从多个不同的城市(仓库)出发,每个旅行商访问一定数量的城市,并返回到其出发城市。这里的挑战在于如何为每个旅行商分配起始城市和要访问的城市集合。
其他变种:除了上述两种常见类型外,还存在一些MTSP的变种,如每个旅行商可能不需要返回其出发城市,或者城市之间可能存在不同的访问成本(如时间、费用等)。
求解MTSP问题的方法通常包括精确算法和启发式算法。精确算法如分支定界法、动态规划等,在问题规模较小时可以找到最优解,但随着问题规模的增大,计算时间会迅速增加。因此,对于大规模问题,通常采用启发式算法,如遗传算法、模拟退火算法、蚁群算法等。
我们可以定义决策变量和目标函数如下:

解决MTSP问题的算法众多,包括但不限于启发式算法(如遗传算法GA、模拟退火算法SA、粒子群优化PSO、人工蜂群ABC、人工兔算法ARO等)、精确方法(如混合整数线性规划MILP、分支定界法BB、动态规划DP的某些变种)以及其他高级优化技术。
MTSP与TSP问题的区别:
1.TSP指的是单个旅行商遍历一圈,将所有城市旅行一遍。
2.MTSP指的是将城市群划分成M个组,每组采用TSP得到最短的旅行路线,所以问题的关键在于如何确定城市群的分组。
2.基于GA遗传优化算法的MTSP问题求解
遗传算法求解MTSP的过程涉及以下几个步骤:
编码方案:将每条可能的路径编码成染色体,每个个体代表一个可行解,由多个子串组成,每个子串对应一个旅行商的路径。遗传算法首先需要对问题进行编码,对于MTSP问题,可以采用染色体表示为一个包含多个子串的序列,每个子串代表一个旅行商的路径,子串中的元素表示城市的编号。初始化时,随机生成一个包含多个解(即个体)的初始种群。
初始化种群:随机生成初始解集合。
适应度评估:定义适应度函数来评估每个个体(即解)的质量,通常为所有旅行商路径长度之和的倒数:

选择:基于适应度值选取一定数量的个体作为“父母”参与交叉和变异操作。
交叉(Crossover):交换两个“父母”个体的部分信息来产生新的后代。
变异(Mutation):对部分个体进行小概率的随机改变以增加种群多样性。
终止条件:当达到预设的最大迭代次数或找到满意的解时停止算法,输出最优解或当前最佳解。
3.MATLAB程序
...........................................................................
% 路线种群初始化
popRoute = zeros(popSize,n); % 断点种群初始化
popBreak = zeros(popSize,nBreaks); % 初始化第一个路线为顺序访问所有城市
popRoute(1,:) = (1:n);
popBreak(1,:) = rand_breaks();
for k = 2:popSize% 初始化其他路线和断点
popRoute(k,:) = randperm(n);% 随机生成一个城市排列作为路线
popBreak(k,:) = rand_breaks();% 随机生成断点
end
% 选择绘制路线时使用的颜色
pclr = ~get(0,'DefaultAxesColor'); % 获取默认坐标轴颜色的补色
clr = [1 0 0; 0 0 1; 0.67 0 1; 0 1 0; 1 0.5 0];
if nSalesmen > 5% 如果销售员数量大于5,则使用HSV颜色空间生成颜色数组
clr = hsv(nSalesmen);% 生成HSV颜色数组
end
% 运行遗传算法
globalMin = Inf;
totalDist = zeros(1,popSize);
distHistory = zeros(1,numIter);
tmpPopRoute = zeros(8,n);
tmpPopBreak = zeros(8,nBreaks);
newPopRoute = zeros(popSize,n);
newPopBreak = zeros(popSize,nBreaks);
if showProg
figure('Name','MTSP_GA | Current Best Solution','Numbertitle','off');
hAx = gca;
end
if showWaitbar
hWait = waitbar(0,'Searching for near-optimal solution ...');
end
for iter = 1:numIter % 开始遗传算法的迭代过程
% 评估种群中每个个体的适应度(即总距离)
for p = 1:popSize
d = 0;
pRoute = popRoute(p,:);
pBreak = popBreak(p,:);
rng = [[1 pBreak+1];[pBreak n]]';
for s = 1:nSalesmen
d = d + dmat(pRoute(rng(s,2)),pRoute(rng(s,1)));
for k = rng(s,1):rng(s,2)-1
d = d + dmat(pRoute(k),pRoute(k+1));
end
end
totalDist(p) = d; % 将当前个体的总距离保存到数组中以便后续选择操作使用
end
% 在种群中找到最佳路线(即总距离最小的路线)并更新全局最小距离和最优解信息
[minDist,index] = min(totalDist);% 找到总距离最小的个体及其索引位置
distHistory(iter) = minDist;% 将当前迭代的最小距离保存到历史记录数组中以便后续分析或绘图使用
if minDist < globalMin% 如果当前最小距离小于全局最小距离则更新全局最小距离和最优解信息
globalMin = minDist; % 更新全局最小距离
optRoute = popRoute(index,:); % 更新最优路线信息
optBreak = popBreak(index,:);% 更新最优断点信息
rng = [[1 optBreak+1];[optBreak n]]';
if showProg
% Plot the Best Route
for s = 1:nSalesmen
rte = optRoute([rng(s,1):rng(s,2) rng(s,1)]);
if dims > 2, plot3(hAx,xy(rte,1),xy(rte,2),xy(rte,3),'.-','Color',clr(s,:));
else plot(hAx,xy(rte,1),xy(rte,2),'.-','Color',clr(s,:)); end
hold(hAx,'on');
end
title(hAx,sprintf('Total Distance = %1.4f, Iteration = %d',minDist,iter));
hold(hAx,'off');
drawnow;
end
end
end
up4031
4.仿真结果



本文介绍了多旅行商问题(MTSP)及其与旅行商问题的区别,重点阐述了如何使用遗传算法求解MTSP,包括编码方案、初始化、适应度评估、选择、交叉和变异等步骤,并提供了MATLAB代码示例。仿真结果显示了遗传算法在寻找MTSP最优解中的应用。
1693

被折叠的 条评论
为什么被折叠?



