目录
2. 交互多模态模型(Interacting Multiple Model, IMM)
基于交互多模态模型(Interacting Multiple Model, IMM)和卡尔曼滤波(Kalman Filter, KF)的多模型目标跟踪算法是一种广泛应用于雷达、自动驾驶、视频监控等领域的先进目标跟踪方法。
1. 卡尔曼滤波
卡尔曼滤波是一种递归的最小二乘估计器,用于在线估计动态系统的状态。卡尔曼滤波在处理线性高斯系统方面特别有效,它可以有效地处理噪声数据,并提供关于系统状态的最佳估计。
卡尔曼滤波基于以下状态空间模型:

其中:
- xk 是系统的状态向量;
- Fk−1 是状态转移矩阵;
- Bk−1 是控制输入矩阵;
- uk−1 是控制输入向量;
- wk−1 是过程噪声,服从零均值高斯分布N(0,Qk−1);
- zk 是观测向量;
- Hk 是观测矩阵;
- vk 是观测噪声,服从零均值高斯分布N(0,Rk)。
卡尔曼滤波过程包括预测和更新两个阶段:


2. 交互多模态模型(Interacting Multiple Model, IMM)
交互多模态模型(IMM)是一种多模型方法,它通过多个模型同时跟踪目标,并通过模型间的交互来提高估计的准确性。IMM 方法适用于处理非线性、非高斯系统的状态估计问题。假设存在M 个模型,每个模型都有自己的状态转移方程和观测方程。每个模型的概率模型可以用以下形式表示:



3. IMM-KF 多模型目标跟踪算法
IMM-KF 多模型目标跟踪算法结合了 IMM 方法和卡尔曼滤波的思想,通过多个模型同时跟踪目标,并通过模型间的交互来提高估计的准确性。
初始化包括设置初始状态估计、初始协方差矩阵、模型概率和转移概率矩阵。
预测阶段包括状态预测、协方差预测和模型概率预测:

更新阶段包括卡尔曼增益计算、状态更新和协方差更新,以及模型概率更新:

4. MATLAB程序
..................................................................
%进行N次仿真
for i=1:N
for k=2:K
xx(k)=xx(k)+LX(1);
yy(k)=yy(k)+LX(3);
ex1(k)=ex1(k)+x(k)-LX(1);
ex2(k)=ex2(k)+(x(k)-LX(1))^2;
ey1(k)=ey1(k)+y(k)-LX(3);
ey2(k)=ey2(k)+(y(k)-LX(3))^2;
%形成混合初始条件
C_=P'*U;
U=P.*(U*ones(1,3))./(ones(3,1)*C_');
X01=LX1*U(1,1)+LX2*U(2,1)+LX3*U(3,1);
X02=LX1*U(1,2)+LX2*U(2,2)+LX3*U(3,2);
X03=LX1*U(1,3)+LX2*U(2,3)+LX3*U(3,3);
P01=U(1,1)*(LP1+(LX1-X01)*(LX1-X01)')+U(2,1)*(LP2+(LX2-X01)*(LX2-X01)')+U(3,1)*(LP3+(LX3-X01)*(LX3-X01)');
P02=U(1,2)*(LP1+(LX1-X02)*(LX1-X02)')+U(2,2)*(LP2+(LX2-X02)*(LX2-X02)')+U(3,2)*(LP3+(LX3-X02)*(LX3-X02)');
P03=U(1,3)*(LP1+(LX1-X03)*(LX1-X03)')+U(2,3)*(LP2+(LX2-X03)*(LX2-X03)')+U(3,3)*(LP3+(LX3-X03)*(LX3-X03)');
%各模型滤波器滤波,计算似然函数
X01=X01(1:4);
P01=P01(1:4,1:4);
[LX1,LP1,E1]=kfilter(A1,H1,G1,Q1,R,X01,P01,Z,k);
LX1=[LX1' 0 0]';
LP1=[LP1,zeros(4,2);zeros(2,6)];
[LX2,LP2,E2]=kfilter(A2,H2,G2,Q2,R,X02,P02,Z,k);
[LX3,LP3,E3]=kfilter(A2,H2,G2,Q3,R,X03,P03,Z,k);
E=[E1 E2 E3];
C=E*C_;
U=(E'.*C_)/C;
%模型概率修正
LX=LX1*U(1)+LX(2)*U(2)+LX3*U(3);
LP=U(1)*(LP1+(LX1-LX)*(LX1-LX)')+U(2)*(LP2+(LX2-LX)*(LX2-LX)')+U(3)*(LP3+(LX3-LX)*(LX3-LX)');
end
end
%计算滤波误差
for k=1:K
ex_(k)=ex1(k)/N;
ex(k)=sqrt(ex2(k)/N-ex_(k)^2);
ey_(k)=ey1(k)/N;
ey(k)=sqrt(ey2(k)/N-ey_(k)^2);
xx(k)=xx(k)/N;
yy(k)=yy(k)/N;
end
%输出图形
figure(1)
plot(x,y,'r',zx,zy,'g',xx,yy,'b');
figure(2)
plot(ex_)
figure(3)
plot(ex)
up4136
5.仿真结果

基于 IMM 和卡尔曼滤波的多模型目标跟踪算法是一种有效的目标跟踪方法,它通过多个模型同时跟踪目标,并通过模型间的交互来提高估计的准确性。通过合理设计状态转移方程、观测方程、模型概率和转移概率矩阵,可以实现对复杂动态系统的精确估计。在实际应用中,需要根据具体问题的特点调整模型结构和参数设置,以获得最佳的跟踪性能。

1173

被折叠的 条评论
为什么被折叠?



