板块22:参数辨识算法
文章平均质量分 72
fpga和matlab
专业即算法,算法即数学,数学即万物。2007年开始从事MATLAB算法仿真工作,2010年开始从事FPGA系统/算法开发工作。擅长解决各种算法仿真、建模、通信、图像处理、AI、智能控制等各专业问题。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
通过各种不同的优化算法实现Hammerstein非线性模型参数辨识系统
本文研究了基于优化算法的Hammerstein非线性模型参数辨识方法。通过将参数辨识转化为优化问题,采用粒子群优化(PSO)和鲸鱼优化(WOA)两种智能算法进行参数搜索。PSO模拟鸟群觅食行为,通过个体和群体最优位置调整搜索方向;WOA则模拟座头鲸气泡网捕食策略。研究在MATLAB环境下实现模型参数辨识仿真,首先将模型分解为8个子模型进行分别辨识,最终完成整个非线性系统的参数估计。仿真结果展示了PSO适应度曲线和7个参数的辨识过程。原创 2025-10-11 20:22:07 · 455 阅读 · 0 评论 -
基于RNN的动态系统参数辨识算法matlab仿真
摘要:本文研究了基于RNN的动态系统建模方法。针对传统辨识方法(如最小二乘法)对非线性系统适应性差的问题,采用RNN通过循环连接自适应学习时序依赖关系。根据系统复杂度选择RNN类型(传统RNN/LSTM/GRU)和结构参数,通过BPTT算法和Adam优化器进行训练。实验表明,RNN能有效辨识系统参数,验证集误差较小(具体数值见测试结果),尤其适用于非线性动态系统建模。原创 2025-10-01 23:07:23 · 408 阅读 · 0 评论 -
通过EM算法的参数辨识和分类识别matlab仿真
该似然函数的结果通常都依赖于隐变量的值,也就是说求解该似然函数需要知道因变量结果,而求解因变量的结果又依赖于该似然函数。从HMM的例子中,我们知道当一个实际问题中,除了可观测的变量外,还需要一些隐变量帮助我们去建模,此时EM算法可以帮助对这种包含隐变量的问题进行参数估计,除了HMM外,还有k-means聚类算法也运用了EM算法,它的隐变量可以说是具体的那些聚类本身。首先EM算法是一个迭代性质的算法,即每个迭代都能得到新的经过学习后的参数,迭代的结束标志一般是人为定义阈值或者参数收敛。原创 2023-01-07 02:45:40 · 1990 阅读 · 0 评论 -
基于自适应降秩LCMV的波束形成算法性能研究和matlab仿真
这里,我们假设一个矩阵SD。这里,SD是一个M*D矩阵,W_是一个D*1向量。具体如何进行降秩,则继续看论文的4章节。此时,为了计算降秩滤波器。·算法复杂度的仿真;·误码率性能对比仿真。原创 2022-09-24 23:28:35 · 1092 阅读 · 0 评论 -
基于最小二乘法和最大似然估计法的系统参数辨识MATLAB仿真
目录一、理论基础二、MATLAB仿真程序三、仿真结果 系统辨识源于工业工程控制,随着计算机技术的发展,出现了许多辨识软件可以用于辅助辨识理论的研究。它不仅在工业领域中有着广泛的应用,而且有经济、社会和环境也有重要的应用价值。1)用于控制系统的设计和分析2)用于在线控制3)用于预报预测4)用于监视系统参数并实现故障诊断。 系统辨识是研究建立系统数学模型的一种理论和方法。所谓辨识就是从含有噪声的输入输出数据中提取被研究对象的数学模型。一般来说,这个模型只是对象的输入输出特性在某种准则原创 2022-09-17 23:56:37 · 12476 阅读 · 0 评论 -
【prony】基于prony算法的参数辨识matlab仿真
被测信号中包含四个振荡模态,在数据窗宽度同样为10s的前提下,利用不同的采样频率做普罗尼计算。结果如表1所示。根据公式的基本表达式:所以最后,进行估计得到的参数为:我们的程序设计中,按照论文中的说明进行设计,对于非连续时间的函数方程式: 4.仿真结论 注意,这里论文中你所给的那个公式,貌似有点小错误,这里我们使用了两组公式进行计算,一组是你所提供的公式,一组是我们给的测试数据。 仿真结果如下所示: 注意,这里我们还...原创 2022-06-25 22:10:01 · 1545 阅读 · 0 评论 -
【EM算法】小波域隐马尔科夫树模型参数的EM算法估计MATLAB仿真
模型参数的EM算法估计MATLAB仿真原创 2022-05-25 03:14:31 · 1662 阅读 · 0 评论 -
【LCMV】基于LCMV的参数辨识算法matlab仿真
1.软件版本MATLAB2013b2.本算法理论知识算法源于文献:3.部分核心代码clc;clear;close all;warning off;Num_Sensor = 16;Num_signal = 2;Num_babe = 2;b = zeros(Num_Sensor,1);H = zeros(Num_Sensor,Num_signal);DOA = zeros.原创 2022-04-28 20:37:21 · 1733 阅读 · 0 评论 -
通过EM算法进行参数辨识和分类识别
function [gamma,llm]=em1r(r,k)load ('data.mat')x=dataset1;L=size(x);l=L(1);zc=zeros(r,40);llm=-inf;for zzz=1:rsigma=zeros(2,2,k);mu=zeros(k,2);sigma(:,:,1)=cov(x);n=zeros(1,3);pik=ones(k,1)/k;while (~(n(1)~=n(2)&&n(2)~=n(3)&&n(3原创 2022-03-09 00:32:55 · 1060 阅读 · 0 评论 -
基于EM参数估计的SAGE算法的MATLAB仿真
EM算法结构如下所示:SAGE算法结构如下所示:这里主要以SAGE的基本结构进行算法仿真。整个MATLAB的算法的流程如下所示:第1步:参数初始化;第2步:产生发送信号,主要函数是产生论文中的s函数;第3步:开始SAGE算法循环,转入第4步;第4步:信号分解;第5步:延迟估计;第6步:到达角估计;延迟参数使用前面更新后的值,其余参数使用前一次的迭代值;第7步:离开角估计;延迟参数和到达角使用前面更新后的值,其余参数使用前一次的迭代值;第8步:频偏估计;延迟参.原创 2022-03-09 00:28:15 · 1432 阅读 · 0 评论 -
用两种不同的方法用指数正弦扫描估计模拟系统的Hammerstein核
display('-----------------------------------------------------------------')close allclear all%% Parametersdisplay('Parameters creation ...')% Assumed order of the system under testN = 4;% Sampling ratefs = 96000;% Lowest frequency of the sw..原创 2022-03-09 00:22:51 · 802 阅读 · 0 评论 -
基于prony算法的参数辨识算法的仿真——简化版
基于prony算法的参数辨识算法的仿真的详细版欢迎订阅本博:https://blog.csdn.net/ccsss22/article/details/1153582321.问题描述:建立如下被测信号:被测信号中包含四个振荡模态,在数据窗宽度同样为10s的前提下,利用不同的采样频率做普罗尼计算。2.部分程序:function X = func_Prony(Signal,dt);s = Signal;L = length(s(1:length(Sign...原创 2021-03-31 22:10:55 · 3528 阅读 · 0 评论 -
LCMV相关的算法
写这个程序的时候,我们遵循如下的设计过程:第一:设计LCMV;第二:降秩LCMV;第三:自适应降秩LCMV; 下面我首先给你捋一下整个算法的大致思路:·输入信号:·然后LCMV滤波器:·然后涉及到降秩部分的内容如下:具体如何进行降秩,则继续看论文的4章节。·然后自适应部分为:具体的算法见5章节。 根据论文中的要求,主要分为几个指标的仿真分析,然后,关于基础的LCMV算法,这个应该都了解的,这里...原创 2020-10-16 16:48:58 · 6522 阅读 · 1 评论 -
基于LCMV的参数辨识算法
这里的思想主要是广义旁瓣相消器是LCMV的一种等效的结构。其主要涉及到的公式有:这个降秩矩阵S的计算公式,和原论文相同。首先介绍一下,为什么性能会提高,这个,有的时候也说不准,这么做一定会提示性能,我们多半都是在理论上说得通的前提下,通过仿真去分析性能,然后来完善理论,这里我弄完这个部分之后,提升性能的原因有二:一:一个是采用GSC算法进行降序之后,获得的降秩性能更优,具体可看GSC的相关理论;二:第二是,这里采用Wq补偿的方式,在实际中,由于直接使用W降秩矩阵的...原创 2020-10-16 16:39:40 · 4727 阅读 · 0 评论
分享