
前言技术汇集
文章平均质量分 91
介绍一些前言的技术,涉及AI,通信,卫星等领域
fpga和matlab
专业即算法,算法即数学,数学即万物。2007年开始从事MATLAB算法仿真工作,2010年开始从事FPGA系统/算法开发工作。擅长解决各种算法仿真、建模、通信、图像处理、AI、智能控制等各专业问题。
展开
-
字节跳动COMET:MoE架构优化技术解析
在人工智能领域,随着模型规模与复杂度不断攀升,高效的模型架构优化技术成为关键。字节跳动开发的 COMET(Computation-communication co-Execution for Mixture-of-Experts Training),针对混合专家模型(MoE,Mixture of Experts)架构,有效解决了分布式训练中通信开销过大的难题,显著提升训练效率并降低成本。原创 2025-03-15 17:23:07 · 1201 阅读 · 0 评论 -
DeepSeek开源周开源的五个项目分析
实验数据表明,使用 DualPipe 能够将训练效率提升200% 左右,同时仅增加了1倍的激活内存峰值,在提升训练效率的同时,对内存资源的增加相对可控,使得在有限的硬件资源下能够更高效地训练大规模模型。通过采用EPLB,在大规模专家并行的应用中,能够将GPU的利用率提升至80%以上,最大限度地减少训练时间。例如,在一个具有大量专家的MoE模型训练任务中,使用EPLB后,训练时间相比未使用时缩短了30% - 50%,大大提高了模型的训练效率,降低了训练成本,同时也提高了模型在推理阶段的响应速度和性能稳定性。原创 2025-03-04 20:54:45 · 4612 阅读 · 3 评论 -
无线算显分离技术
在传统设备架构中,计算单元(如 CPU、GPU 等)和显示单元紧密集成。以笔记本电脑为例,其内部的 CPU 负责数据处理,GPU 负责图形渲染,然后将处理后的图像信号直接传输给内置显示屏。而无线算显分离技术打破了这种紧密耦合的关系。计算设备专注于执行各类复杂算法和数据处理任务,显示设备则单纯负责将接收到的图像数据进行可视化呈现。这种分工模式使得不同设备可以依据自身特性进行优化设计,计算设备可配备更强大的处理器和内存,以应对高强度的计算需求;显示设备则可在显示效果、便携性等方面进行改进。原创 2025-02-20 22:30:28 · 906 阅读 · 1 评论 -
deepseek指令使用方法总结
目录1.基础指令1.1直接提问1.2内容生成1.3总结与解释2.格式控制指令2.1指定输出格式2.2结构化输出3.参数调整指令3.1 控制输出长度3.2 调整风格与语气3.3温度参数(创造性控制)4.高级功能指令4.1多轮对话控制4.2角色扮演4.3逻辑运算与数据分析5.优化与修正指令5.1迭代优化5.2错误修正6.特殊场景指令6.1多语言支持6.2安全边界设置7.实用技巧7.1复合指令7.2优先级符号7.3参考范例8.常见问题处理DeepSeek-R1作为一款源自国内的创新性大型模型,被视作国产 AGI的原创 2025-02-17 18:56:39 · 4652 阅读 · 1 评论 -
DeepSeek本地部署
DeepSeek的高性价比策略降低了AI部署的门槛,使得更多企业能够将AI技术应用于边缘计算场景。并且随着算力部署成本的降低,以前不少集中在大型中心的算力需求,有望向更多的小型设备、边缘设备集中,这是因为,DeepSeek的轻量化模型能够适应从高端服务器到普通消费级设备的多种场景。这意味着,边缘计算设备,如智能网联设备、工业质检设备、智慧交通设备等,将能够更好地支持AI应用。在部署前,我们首先要了解不同规模的deepseek对硬件的要求:下面我们以1.5B为例,介绍如何在本地进行部署。原创 2025-02-08 17:21:50 · 2744 阅读 · 0 评论 -
FPGA硬件设计中常用晶振时偏情况的深度剖析
例如,当 FPGA 系统中的其他大功率器件开启或关闭时,可能会引起电源线上的电压瞬间波动,这种波动如果传递到晶振的供电端,就会对晶振的频率稳定性产生影响。可以定期使用 FPGA 内部的逻辑资源或外部的测量设备对晶振的频率进行测量,然后根据测量结果计算出需要调整的分频比或倍频比,并通过软件控制 FPGA 内部的时钟管理单元(CMU)来实现时钟频率的校准。例如,常见的温补石英晶体振荡器(TCXO),通过内置的温度补偿电路,能够有效减小温度变化对频率的影响,在较宽的温度范围内保持稳定的频率输出。原创 2025-02-05 14:37:59 · 1240 阅读 · 0 评论 -
大模型蒸馏技术的理论分析与应用
模型蒸馏(Model Distillation)是一种在深度学习中用于压缩模型和提高模型效率的技术。其核心思想是将一个复杂的、性能较高的教师模型(Teacher Model)的知识迁移到一个相对简单的学生模型(Student Model)中,使学生模型能够在保持较好性能的同时,具有更小的模型规模和更快的推理速度。:教师模型通常在大规模数据上进行训练,学习到了丰富的特征表示和知识。通过模型蒸馏,将教师模型的这些知识传递给学生模型,帮助学生模型更好地学习和泛化。原创 2025-02-01 03:32:22 · 1569 阅读 · 0 评论 -
DeepSeek-R1,DeepSeek-V3,DeepSeek-VL,DeepSeek-V2,DeepSeek-R1-Zero各个模型区别
DeepSeek-VL:DeepSeek-VL2 系列有 DeepSeek-VL2-Tiny、DeepSeek-VL2-Small 和 DeepSeek-VL2,分别具有 10 亿、28 亿和 45 亿个激活参数。DeepSeek-V2:基于高效且轻量级的框架 HAI-LLM 进行训练,采用 16-way zero-bubble pipeline 并行、8-way 专家并行和 ZeRO-1 数据并行。DeepSeek-VL:训练过程包括视觉-语言对齐、视觉 - 语言预训练、监督微调(SFT)三个阶段。原创 2025-01-29 23:07:55 · 12473 阅读 · 0 评论 -
DeepSeek-V3原理介绍与性能分析
DeepSeek-V3主要涉及到创新点包括混合专家(MoE)架构,多头潜在注意力(MLA)机制,多 Token 预测(MTP)训练目标,FP8混合精度训练框架,训练与部署效率的协同优化以及后训练阶段的创新知识蒸馏。原创 2025-01-26 15:28:50 · 6036 阅读 · 0 评论 -
无线通信与人工智能技术与发展年度总结
太赫兹波(Terahertz wave,简记为 THz),其频段覆盖范围处于100GHz 至10THz之间,所处位置介于微波与远红外区域之间,如下图所示。 这一频段蕴藏着极为丰富、但尚未得到充分挖掘的频谱资源。太赫兹波具有独特的物理特性,它能够顺利穿透非极性分子材料以及非金属复合材料 ,而且对分子的振动和转动能级具备卓越的光谱分辨能力。鉴于太赫兹频段拥有超大带宽的频谱资源,能够有力支持超高速率的无线通信,因此,它被视作6G 实现太比特每秒(Tbps)通信速率的关键空中接口技术备选方案之一。原创 2025-01-22 18:31:33 · 2520 阅读 · 10 评论 -
DDPG深度确定性策略梯度强化学习控制系统matlab仿真实现
DDPG(Deep Deterministic Policy Gradient)是一种用于连续动作空间的无模型强化学习算法。它结合了深度神经网络和确定性策略梯度定理,能够有效地学习到最优策略。该算法的目标是在环境中找到一个最优策略,使得智能体(agent)能够最大化累积奖励。原创 2025-01-15 15:22:19 · 1727 阅读 · 0 评论 -
基于近端策略优化(PPO)强化学习的四足机器人步态控制系统的研究
步态控制是四足机器人运动控制的核心问题之一,它决定了机器人的稳定性和效率。PPO算法定义了一种新的目标函数,其可以通过多个训练步骤进行小批量的更新,从而解决了传统策略梯度算法中的步长选择问题。在PPO中,智能体的策略πθ(a∣s)由一个参数化的概率分布表示,s表示当前状态,a表示采取的动作。从上图可以知道,PPO进行了clip函数进行裁剪操作,新的策略相对于旧的策略不可能大幅度的提高,可以防止策略过度更新。平滑奖励:鼓励动作平滑,如最小化关节角度和角速度的变化率。奖励函数的设计对于步态控制至关重要。原创 2024-10-09 03:51:18 · 3249 阅读 · 0 评论 -
芯片的内部结构/FPGA芯片的构架
半导体芯片的内部结构是一个高度复杂的集成系统,其设计与制造涉及多个层次的物理结构和电气特性。硅基底与晶圆层: 芯片的基本材料是硅,通常以单晶硅制成的薄圆片——晶圆作为基础。晶圆直径从早期的几英寸发展到现在普遍使用的12英寸甚至更大的尺寸。原创 2024-04-14 17:43:37 · 7330 阅读 · 1 评论 -
Sora技术原理简要分析
Sora 技术以其创新的“扩散+Transformer”混合模型为核心,能够生成高质量的视频内容。以下是对Sora技术路线的主要特点和技术原理的概述。原创 2024-03-24 20:18:46 · 4091 阅读 · 0 评论