先对二叉堆(最大堆和最小堆)理解:(实现添加,删除)
二叉堆文章:http://www.cnblogs.com/skywang12345/p/3610187.html
1、添加
2、删除
堆排序文章:http://www.cnblogs.com/skywang12345/p/3602162.html
最大堆进行升序排序的基本思想:
① 初始化堆:将数列a[1…n]构造成最大堆。
② 交换数据:将a[1]和a[n]交换,使a[n]是a[1…n]中的最大值;然后将a[1…n-1]重新调整为最大堆。 接着,将a[1]和a[n-1]交换,使a[n-1]是a[1…n-1]中的最大值;然后将a[1…n-2]重新调整为最大值。 依次类推,直到整个数列都是有序的。
数组实现的二叉堆的性质:
在第一个元素的索引为 0 的情形中:
性质一:索引为i的左孩子的索引是 (2*i+1);
性质二:索引为i的右孩子的索引是 (2*i+2);
性质三:索引为i的父结点的索引是 floor((i-1)/2);
/*
* (最大)堆的向下调整算法
*
* 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
* 其中,N为数组下标索引值,如数组中第1个数对应的N为0。
*
* 参数说明:
* a -- 待排序的数组
* start -- 被下调节点的起始位置(一般为0,表示从第1个开始)
* end -- 截至范围(一般为数组中最后一个元素的索引)
*/
void maxheap_down(int a[], int start, int end)
{
int c = start; // 当前(current)节点的位置
int l = 2*c + 1; // 左(left)孩子的位置
int tmp = a[c]; // 当前(current)节点的大小
for (; l <= end; c=l,l=2*l+1)
{
// "l"是左孩子,"l+1"是右孩子
if ( l < end && a[l] < a[l+1])
l++; // 左右两孩子中选择较大者,即m_heap[l+1]
if (tmp >= a[l])
break; // 调整结束
else // 交换值
{
a[c] = a[l];
a[l]= tmp;
}
}
}
/*
* 堆排序(从小到大)
*
* 参数说明:
* a -- 待排序的数组
* n -- 数组的长度
*/
void heap_sort(int * a, int n)
{
int i;
// 从(n/2-1) --> 0逐次遍历。遍历之后,得到的数组实际上是一个(最大)二叉堆。
for (i = n / 2 - 1; i >= 0; i--)
maxheap_down(a, i, n-1);
// 从最后一个元素开始对序列进行调整,不断的缩小调整的范围直到第一个元素
for (i = n - 1; i > 0; i--)
{
// 交换a[0]和a[i]。交换后,a[i]是a[0...i]中最大的。
swap(a[0], a[i]);
// 调整a[0...i-1],使得a[0...i-1]仍然是一个最大堆。
// 即,保证a[i-1]是a[0...i-1]中的最大值。
maxheap_down(a, 0, i-1);
}
}
int main()
{
int array[] = {2,8,7,1,0,10,3};
int len = sizeof(array);
heap_sort(array, len);
return 0;
}