Description
方伯伯正在做他的Oj。现在他在处理Oj上的用户排名问题。
Oj上注册了n个用户,编号为1~”,一开始他们按照编号排名。方伯伯会按照心情对这些用户做以下四种操作,修改用户的排名和编号:
1.操作格式为1 x y,意味着将编号为z的用户编号改为V,而排名不变,执行完该操作后需要输出该用户在队列中的位置,数据保证x必然出现在队列中,同时1,是一个当前不在排名中的编号。
2.操作格式为2 x,意味着将编号为x的用户的排名提升到第一位,执行完该操作后需要输出执行该操作前编号为z用户的排名。
3.操作格式为3 x,意味着将编号为z的用户的排名降到最后一位,执行完该操作后需要输出执行该操作前编号为z用户的排名。
4.操作格式为4 k,意味着查询当前排名为足的用户编号,执行完该操作后需要输出当前操作用户的编号。
但同时为了防止别人监听自己的工作,方伯伯对他的操作进行了加密,即将四种操作的格式分别改为了:
1 x+a y+a
2 x+a
3 x+a
4 k+a
其中a为上一次操作得到的输出,一开始a=0。
例如:
上一次操作得到的输出是5
这一次操作的输入为:1 13 15
因为这个输入是经过加密后的,所以你应该处理的操作是1 8 10
现在你截获丁方伯伯的所有操作,希望你能给出结果。
Input
输入的第1行包含2个用空格分隔的整数n和m,表示初始用户数和操作数。
此后有m行,每行是一个询问,询问格式如上所示。
Output
输出包含m行。每行包含一个整数,其中第i行的整数表示第i个操作的输出。
Sample Input
10 10
1 2 11
3 13
25
37
28
2 10
2 11
3 14
2 18
4 9
Sample Output
2
2
2
4
3
5
5
7
8
11
HINT
对于 100% 的数据,1 ≤ n ≤ 10^8,1 ≤ m ≤ 10^5
输入保证对于所有的操作 1,2,3,x 必然已经出现在队列中,同时对于所有操作 1,1 ≤ y ≤ 2 × 10^8,并且y 没有出现在队列中。
对于所有操作 4,保证 1 ≤ k ≤ n。
解题思路:
这道题和NOIP2017的最后一题思路相近,把编号和排名连续的点并到平衡树的一个节点中维护,有一个操作就把一个完整节点分裂,这样复杂度就只与修改次数有关了。
排名和编号的维护是这样的。
平衡树节点按排名维护,由于维护区间,键值要记l[x]和r[x]两个。初始时只有一个节点l=1,r=n。又由于调换操作只有调到首尾,所以节点键值可以离散,记当前键值的min和max,放到前面就是–min,放到后面就是++max。
每个节点再记一下对应的编号,而且如果节点维护的是一段区间,说明中间还没被修改过,其编号就是键值。序列中的节点再用一个map记录一下对应平衡树中的键值,只有修改了才记,没有就是编号本身。
感觉自己的代码算短的……
#include<bits/stdc++.h>
using namespace std;
int getint()
{
int i=0,f=1;char c;
for(c=getchar();(c!='-')&&(c<'0'||c>'9');c=getchar());
if(c=='-')f=-1,c=getchar();
for(;c>='0'&&c<='9';c=getchar())i=(i<<3)+(i<<1)+c-'0';
return i*f;
}
const int N=300005;
int n,Q,a,mi,mx;
int tot,root,fa[N],son[N][2],L[N],R[N],size[N],val[N],id[N];
map<int,int>m;
int which(int x)
{
return son[fa[x]][1]==x;
}
void update(int x)
{
size[x]=size[son[x][0]]+size[son[x][1]]+(R[x]-L[x]+1);
}
void rotate(int x)
{
int y=fa[x],z=fa[y],t=which(x);
if(y==root)root=x;
else son[z][which(y)]=x;
fa[x]=z,fa[y]=x;
son[y][t]=son[x][t^1],son[x][t^1]=y;
if(son[y][t])fa[son[y][t]]=y;
update(y),update(x);
}
void splay(int x,int tag)
{
while(fa[x]!=tag)
{
if(fa[fa[x]]!=tag)
which(x)==which(fa[x])?rotate(fa[x]):rotate(x);
rotate(x);
}
}
void insert(int &x,int f,int l,int r,int idx)
{
if(l>r)return;
if(!x)
{
x=++tot,size[x]=r-l+1,fa[x]=f;
L[x]=l,R[x]=r,id[x]=idx;
return;
}
if(r<L[x])insert(son[x][0],x,l,r,idx);
else insert(son[x][1],x,l,r,idx);
update(x);
}
int find(int x,int v)
{
if(v>=L[x]&&v<=R[x])return x;
if(v<L[x])return find(son[x][0],v);
else return find(son[x][1],v);
}
void del(int x,int v)
{
if(!son[x][1])root=son[x][0],fa[root]=0;
else
{
int y=son[x][1];
while(son[y][0])y=son[y][0];
splay(y,x);root=y,fa[y]=0;
if(son[x][0])son[y][0]=son[x][0],fa[son[x][0]]=y;
update(y);
}
insert(root,0,L[x],v-1,L[x]),splay(tot,0);
insert(root,0,v+1,R[x],v+1),splay(tot,0);
}
void modify(int x,int v,int idx)
{
if(L[x]==R[x]){id[x]=idx;return;}
else del(x,v),insert(root,0,v,v,idx),splay(tot,0);
}
int get_id(int x,int k)
{
if(k>size[son[x][0]]&&k<=size[x]-size[son[x][1]])
{
if(L[x]==R[x])return id[x];
else return L[x]+k-size[son[x][0]]-1;
}
if(k<=size[son[x][0]])return get_id(son[x][0],k);
else return get_id(son[x][1],k-(size[x]-size[son[x][1]]));
}
int main()
{
//freopen("lx.in","r",stdin);
//freopen("lx.out","w",stdout);
n=getint(),Q=getint();
mx=n,mi=0;
insert(root,0,1,n,1);
while(Q--)
{
int op=getint(),x=getint()-a;
if(op==1)
{
int y=getint()-a;
int v=m[x];if(!v)v=x;
int u=find(root,v);splay(u,0);
cout<<(a=size[son[u][0]]+(v-L[u]+1))<<'\n';
modify(u,v,y),m[x]=0,m[y]=v;
}
else if(op<4)
{
int v=m[x];if(!v)v=x;
int u=find(root,v);splay(u,0);
cout<<(a=size[son[u][0]]+(v-L[u]+1))<<'\n';
del(u,v),v=m[x]=(op==2?--mi:++mx);
insert(root,0,v,v,x);splay(tot,0);
}
else cout<<(a=get_id(root,x))<<'\n';
}
return 0;
}