阿九-进取的测试er
码龄2年
关注
提问 私信
  • 博客:105,850
    视频:22
    105,872
    总访问量
  • 275
    原创
  • 780,289
    排名
  • 30
    粉丝
  • 0
    铁粉

个人简介:changchangjiujiu0909

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2022-07-25
博客简介:

ceba20200309的博客

查看详细资料
个人成就
  • 获得16次点赞
  • 内容获得8次评论
  • 获得161次收藏
  • 代码片获得123次分享
创作历程
  • 122篇
    2023年
  • 160篇
    2022年
成就勋章
兴趣领域 设置
  • Python
    python
  • Java
    java
  • 测试
    单元测试selenium测试工具压力测试测试用例postman集成测试模块测试测试覆盖率安全性测试功能测试appiumjmeter
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

186人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

ChatGPT训练营来啦,手把手带你玩转ChatGPT~

首先,ChatGPT的出现在测试领域中产生了巨大的影响,它为测试人员的测试工作带来了诸多便利。以下是小编借助ChatGPT实现测试工作的案例分享,如果大家有更多利用ChatGPT实现的测试工作,也欢迎报名本次训练营后进群交流分享,让更多人了解ChatGPT在测试领域中的应用。由导出的思维导图可以看出,ChatGPT生成的测试点非常全面,涵盖了多个方面的测试需求。尽管许多人担心它的强大可能会取代测试人员,但实际上ChatGPT可以成为测试人员的强大助手,提高测试工作的效率和准确性。不要错过这个难得的机会哦~
原创
发布博客 2023.04.13 ·
625 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

卷积神经网络的常用改进

如果我们的数据,包括图片、文本、音频等,如果尺寸变化幅度比较大,是否可以考虑将样本尺寸相近的数据放到同一个batch,网络中不使用全链接,实现动态尺度模型。注意同一个batch里的数据需要是同样的尺寸,我们都会进行pad,所以常用做法是将尺度相近的图片放到同一个batch里,padding后变成同一个尺寸。落地部署中,我们不仅关注准确度,可能更关心响应时间,因此模型不能太复杂,全卷积是一个很好的思路。1.去掉全链接层,使用全卷积神经网络,1*1卷积层控制输出尺寸。1卷积,控制channel为10。
原创
发布博客 2023.02.28 ·
503 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

Tensorflow 2.x 模型-部署与实践

Tensorflow 2.x 模型-部署与实践
原创
发布博客 2023.02.28 ·
372 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

JAR 文件规范详解

JarIndex机制收集applet中定义的所有jar文件的内容,并将信息存储在索引文件中,该索引文件位于applet类路径的第一个jar文件中。当类加载器加载根jar文件时,它读取INDEX.LIST文件,并使用它构造哈希表,哈希表是从文件和包名称到jar文件名列表的映射。Magic属性的值是一组逗号分隔的特定于上下文的字符串。当类加载器加载第一个jar文件,并在META-INF目录中找到INDEX.LIST文件,它将构造索引哈希表并为扩展使用新的加载方案,否则,类加载器将只使用原始的线性搜索算法。
原创
发布博客 2023.02.28 ·
1231 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

黑盒测试中-关键截图-的打点方案

黑盒测试中-关键截图-的打点方案
原创
发布博客 2023.02.28 ·
136 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

为什么要学习TypeScript

布尔值 - boolean , 数字 - number ,字符串 - string ,数组 - Array ,元组 - Tuple ,函数 - Function , 对象 - Object ,操作符 - void,Symbol - 具有唯一的值 ,undefined 和 null 初始化变量 ,any - 如果不指定一个变量的类型,则默认就是any类型 , never - never表示永远不会有返回值的类型 ①.函数抛出异常 ②. 死循环。调用的时候,根据函数的参数来区别不同的函数。
原创
发布博客 2023.02.28 ·
120 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

少数据量情况下的深度学习模型训练效果提升技巧

在进行目标识别的过程中,获取大量的数据是一件比较困难的事,但好的模型往往是基于大的数据集训练而来的。即使待识别的图像存在一些缺陷,也能够准确的识别出目标。针对不同的数据,应根据数据和待识别目标的特点对数据集进行扩充,目前大多数目标识别框架都做了相关的数据扩充,但这些数据扩充的方式不一定适合自己的训练数据,因此要结合自己数据,避免重复和无意义的操作。数据扩充已被证明是一种有效的提高模型鲁棒性的方法,扩充的方法也有很多,但需要结合自己的数据和目标的特征进行具体分析,选择合适的方法,才能有效的提升模型的性能。
原创
发布博客 2023.02.28 ·
502 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

从Java8升级到Java11

从Java 11开始,OpenJDK major version的发布间隔差不多是半年,不用全部都要去关注,都是追赶,但是LTS版本,需要去追赶,去升级,Java11就是最新的LTS版本,下一个或者再一下major version,很可能又是一个LTS版本;虽然目前使用Java 8都挺好的,现实是Java 8的一些特性会被往后移植,但是后续版本的特性和优化不会再被集成到Java 8中了。Java 8 中的流已经很强大了,而且只要涉及到 IO,只要涉及到对一系列数据进行操作,都会用到流。
原创
发布博客 2023.02.28 ·
1427 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

一种通过云配置处理应用权限弹框的方案

在进行目标识别的过程中,获取大量的数据是一件比较困难的事,但好的模型往往是基于大的数据集训练而来的。尤其是在做项目的过程中,用户上传的测试数据与我们用于训练的数据之间的差异难以把控,可能会因为一些不相干的因素(角度不同,模糊度不同,目标大小不同等)的干扰而导致识别的效果不够理想。针对不同的数据,应根据数据和待识别目标的特点对数据集进行扩充,目前大多数目标识别框架都做了相关的数据扩充,但这些数据扩充的方式不一定适合自己的训练数据,因此要结合自己数据,避免重复和无意义的操作。
原创
发布博客 2023.02.28 ·
91 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

相比 Selenium,Web 自动化测试框架 Playwright 有哪些强大的优势?

mvn exec:java -e -Dexec.mainClass=com.microsoft.playwright.CLI -Dexec.args="codegen --viewport-size=800,600 地址"因为一旦设定了 Trace,代码执行过程中的每一个步骤,都有详细的截图,日志,时长的信息,比起功能测试的过程记录信息还要更加全面。在做自动化测试过程中,常常会碰到的一个痛点问题:自动化测试明明发现了代码的 BUG,但是复现比较困难,研发又不认账。
原创
发布博客 2023.02.25 ·
312 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Python中日志异步发送到远程服务器

究其原因是由于emit方法中使用 async with session.post 函数,它需要在一个使用async 修饰的函数 里执行,所以修改emit函数,使用async来修饰,这里emit函数变成了异步的函数, 返回的是一个 coroutine 对象,要想执行coroutine对象,需要使用await, 但是脚本里却没有在哪里调用 await emit() ,所以崩溃信息 中显示 coroutine ‘CustomHandler.emit’ was never awaited。
原创
发布博客 2023.02.21 ·
223 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

前端对 Axios 封装的接口统一处理

在vue项目中,和后台交互获取数据这块,我们通常使用的是Axios库,它是基于promise的http库,可运行在浏览器端和node.js中。所以我们的尤大大也是果断放弃了对其官方库vue-resource的维护,直接推荐我们使用Axios库。例如上面的思想:如果后台返回的状态码是2000,则正常返回数据,否则的根据错误的状态码类型进行一些我们需要的错误,其实这里主要就是进行了错误的统一处理和没登录或登录过期后调整登录页的一个操作。这个很重要,如果没有序列化操作,后台是拿不到你提交的数据。
原创
发布博客 2023.02.21 ·
459 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

提高Android云真机稳定性的方法

在python中 time.sleep() 函数是个阻塞函数, 会阻塞python的运行, 使用tornado做web项目,你不可能只为一个用户服务,当有多个用户访问同一个接口时,python在处理sleep操作时会阻塞运行,这时后来的请求也要等待前的请求,只有当前面的请求结束以后再处理,这也就是为什么上面的压测最短是503ms,最长却需要50240ms的原因.因为大家是阻塞进行的。依然强悍, QPS继续上升到305,而且仅多用了1秒钟.如果再继续提高用户量,我们来看看它的极限在哪里?
原创
发布博客 2023.02.21 ·
106 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Thinkphp5 集成 Swoole

Thinkphp5 集成 Swoole
原创
发布博客 2023.02.21 ·
621 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Jenkins 集成 Android 代码检查

Android lint是一个静态代码分析工具,通过lint工具,你可以不用边运行边调试,或者通过单元测试进行代码检查,可以检测代码中不规范、不和要求的问题,解决一些潜在的bug。可以直接在Android stuido中调用,也可以通过命令行./gradlew lint 执行,当然也可以集成到jenkins中,每次编译的时候都执行代码。如上面这个问题,很明显是由于项目配置的支持最小SDK版本是14,可是工程中却使用了SDK必须大于19才能使用的api,当工程运行在低版本的手机时,就很容易发生各种异常。
原创
发布博客 2023.02.21 ·
212 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Python-Jenkins 如何操作 Job/View模块

Python-Jenkins 如何操作 Job/View模块
原创
发布博客 2023.02.17 ·
433 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

相似图像的检测方法

从检测结果中可以看出,针对上述的数据,基于vgg16和sift特征的检索结果会更加的准确和稳定,基于直方图检索出的图与待检测的图也都比较相似,而基于BOW和哈希算法检索出的结果表现则不稳定,基于orb特征检索出来的图和待检测图差距很大,效果很不理想。因此,可以根据自身数据的特点和不同方法的特性来综合考虑。对于待检测图片,进行与图片数据库中同样方式的编码或特征提取,然后计算该编码或该特征向量和数据库中图像的编码或向量的距离,作为图像之间的相似度,并对相似度进行排序,将相似度靠前或符合需求的图像显示出来。
原创
发布博客 2023.02.17 ·
1350 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

堆排序原理及实现

其实堆是有记忆功能的,就是因为他自身的结构,每个结点的值都大于或等于其左右孩子结点的值(这是大顶堆,小顶堆则是每个结点的值都小于或等于其左右孩子结点的值),这就是记忆!首先由普通的数列联想到完全二叉树,然后利用完全二叉树的特性来实现记忆的功能,从而提高运行效率,只能由衷的佩服这个算法的提出者,太厉害了。将待排序的序列构建成为一个大顶堆,其实就是从下往上,从右到左,将每个非终端结点(非叶结点)当作根结点,将其和其子树调整成大顶堆。它们都是有孩子的结点。小白们也很熟悉的:冒泡,归并,简单选择,归并,堆排序。
原创
发布博客 2023.02.17 ·
647 阅读 ·
1 点赞 ·
0 评论 ·
7 收藏

一种基于视频帧差异视频卡顿检测方案

循环遍历视频帧,获取每一帧的TI2值,如果当前的TI2值 Dfact * Mdrop, 任务当前帧不存在卡顿,把视频所有的帧按找时间顺序排序后,就是我们当前视频卡顿检测的列表值。在近乎静态的场景和动态的场景中,由于像素的变动很小,或者像素变动很大,卡顿的帧/丢失帧会存在少量/大量的运动信息,在确定运动水平的时候需要涉及主观直觉的要素,所以需要利用动态阈值来确定卡顿的视频帧。
原创
发布博客 2023.02.17 ·
392 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Lambda表达式介绍和底层实现分析

所以使用lambda表达式的地方,会在类编译的时候在本类中生成对应的私有静态方法和一个INNERCLASS的访问标识(具体是什么东西没找到资料,注释显示是一个访问标识),该访问标识会调用引导类加载器动态生成内部类,该内部类实现了函数式接口,在实现接口的方法中,会调用编译器生成静态方法,在使用lambda表达式的地方,通过传递内部类实例,来调用函数式接口方法。函数式接口本身就是一个普通的接口,而lambda表达式本质上和匿名内部类是一样的,只不过条件更加苛刻。
原创
发布博客 2023.02.17 ·
172 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多