BZOJ 2306: [Ctsc2011]幸福路径

版权声明:本文为一名蒟蒻的原创文章,大神转载的话顺便说个出处呗。 https://blog.csdn.net/cgh_Andy/article/details/69951084

虽说是无限长的路 可是随着p的减小 就不会影响到答案了
所以就跑倍增floyd (关于倍增floyd之前貌似具体说过 其实也挺好理解的吧?
精度还真是个玄学的东西QAQ

#include<bits/stdc++.h>
using namespace std;
const int N=101,inf=1e9;
inline int read()
{
    char ch=getchar(); int x=0,f=1;
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1; ch=getchar();}
    while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0'; ch=getchar();}
    return x*f;
}
double w[N],p,f[N][N][2];
int main()
{
    int n=read(),m=read(),i,j,k,st,x,y;
    for(i=1;i<=n;i++) scanf("%lf",&w[i]);
    st=read(); scanf("%lf",&p);
    for(i=1;i<=n;i++)for(j=1;j<=n;j++)f[i][j][0]=i==j?0:-inf;
    for(i=1;i<=m;i++){
        x=read(),y=read();
        f[x][y][0]=w[y]*p;
    }
    int nw=0;
    for(double u=p;u>5*1e-8;u=u*u){
        for(i=1;i<=n;i++)for(j=1;j<=n;j++)
            f[i][j][nw^1]=-inf;
        for(k=1;k<=n;k++)for(i=1;i<=n;i++)for(j=1;j<=n;j++)
            f[i][j][nw^1]=max(f[i][j][nw^1],f[i][k][nw]+f[k][j][nw]*u);
        nw^=1;
    }
    double ans=0;
    for(i=1;i<=n;i++)ans=max(ans,f[st][i][nw]);
    printf("%.1lf\n",ans+w[st]);
    return 0;
}
阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页