BZOJ 4811: [Ynoi2017]由乃的OJ

辣鸡csdn要我改密码所以发晚了

老年选手懒于写blog(躺

反正也步入晚年,准备AFO

这道题不错 想写写

其实 O(nklog2) 的做法并不难想到,我们只要枚举某一位填了0或1结果会是啥就行了

剩下就是树剖的操作了

然而其实每一位是不必枚举的,在线段树中,你只要维护全部是0或者全部是1的就可以了

v0[u]=(v0[l]&v1[r])|(~v0[l]&v0[r]);
v1[u]=(v1[l]&v1[r])|(~v1[l]&v0[r]);

因为是沿着路径走的,所以线段树也要维护从区间从右往左的这个东西,跟上面道理差不多

.最后每一位贪心取一下,保证一下不超约束就好。

我觉得我有点蛋疼,一开始为了短线段树打了数组,后面合并就有点蛋疼了…

后来发现写结构体的话似乎方便多了、

#include<bits/stdc++.h>
using namespace std;
typedef unsigned long long LL;
const int N=1e5+2,inf=1e9+7;
char O[1<<14],*S=O,*T=O;
#define gc (S==T&&(T=(S=O)+fread(O,1,1<<14,stdin),S==T)?-1:*S++)
inline LL read(){
    LL x=0,f=1; char ch=gc;
    while(ch<'0' || ch>'9'){if(ch=='-')f=-1; ch=gc;}
    while(ch>='0' && ch<='9'){x=(x<<1)+(x<<3)+(ch^48); ch=gc;}
    return x*f;
}
struct E{int y,nex;}e[N<<1];
int len,fir[N],tot,cnt,q,lc[N*3],rc[N*3],n;
LL v0[N*3],v1[N*3],w0[N*3],w1[N*3],a[N],mx;
void ins(int x,int y){
    e[++len]=(E){y,fir[x]},fir[x]=len;
}
int id,p[N],dfn[N],sz[N],son[N],dep[N],fa[N],top[N],o[N];
void dfs(int x){
    sz[x]=1;
    for(int k=fir[x];k;k=e[k].nex){
        int y=e[k].y; if(y==fa[x])continue;
        fa[y]=x,dep[y]=dep[x]+1,dfs(y); sz[x]+=sz[y];
        if(sz[y]>sz[son[x]]) son[x]=y;
    }
}
void dfs1(int x,int tp){
    dfn[x]=++id,o[id]=x,top[x]=tp;
    if(!son[x])return;
    dfs1(son[x],tp);
    for(int k=fir[x];k;k=e[k].nex)
        if(e[k].y!=fa[x] && e[k].y!=son[x]) dfs1(e[k].y,e[k].y);
}
inline LL cal(LL x,int u){
    if(p[u]==1) return x&a[u];
    if(p[u]==2) return x|a[u];
    return x^a[u];
}
void upd(int x,int l,int r){
    int u=tot+1;
    v0[u]=(v0[l]&v1[r])|(~v0[l]&v0[r]);
    v1[u]=(v1[l]&v1[r])|(~v1[l]&v0[r]);
    w0[u]=(w0[r]&w1[l])|(~w0[r]&w0[l]);
    w1[u]=(w1[r]&w1[l])|(~w1[r]&w0[l]);
    v0[x]=v0[u],v1[x]=v1[u],w0[x]=w0[u],w1[x]=w1[u];
}
void bt(int &x,int l,int r){
    x=++tot; int mid=l+r>>1;
    if(l==r){
        int u=o[l];
        v0[x]=w0[x]=cal(0,u),v1[x]=w1[x]=cal(mx,u);
        return;
    }
    bt(lc[x],l,mid),bt(rc[x],mid+1,r);
    upd(x,lc[x],rc[x]);
}
void cha(int x,int l,int r,int k){
    if(l==r){
        int u=o[l];
        v0[x]=w0[x]=cal(0,u),v1[x]=w1[x]=cal(mx,u);
        return;
    }
    int mid=l+r>>1;
    if(k<=mid) cha(lc[x],l,mid,k);
    else cha(rc[x],mid+1,r,k);
    upd(x,lc[x],rc[x]);
}
int get(int x,int l,int r,int ql,int qr){
    if(l==ql && r==qr) return x;
    int mid=l+r>>1;
    if(ql>mid) return get(rc[x],mid+1,r,ql,qr);
    if(qr<=mid) return get(lc[x],l,mid,ql,qr);
    int u=++tot;
    upd(u,get(lc[x],l,mid,ql,mid),get(rc[x],mid+1,r,mid+1,qr));
    return u;
}
int turn(int x){
    int u=x; if(u<=cnt) u=tot+2;
    v0[u]=v0[x],v1[u]=v1[x],w0[u]=w0[x],w1[u]=w1[x];
    swap(v0[u],w0[u]),swap(v1[u],w1[u]);
    return u;
}
void solve(int x,int y){
    int vx=++tot,vy=++tot;
    v0[vx]=v0[vy]=w0[vx]=w0[vy]=0;
    v1[vx]=v1[vy]=w1[vx]=w1[vy]=mx;
    int fx=top[x],fy=top[y];
    while(fx!=fy)
        if(dep[fx]>dep[fy]) upd(vx,vx,turn( get(1,1,n,dfn[fx],dfn[x]) )),x=fa[fx],fx=top[x];
        else upd(vy,get(1,1,n,dfn[fy],dfn[y]),vy),y=fa[fy],fy=top[y];
    if(dep[x]>dep[y]) upd(vx,vx,turn( get(1,1,n,dfn[y],dfn[x]) ));
    else upd(vx,vx,get(1,1,n,dfn[x],dfn[y]));
    upd(q,vx,vy);
}
int main(){
    n=read(); int m=read(),Z=read();
    for(int i=1;i<=n;++i) p[i]=read(),a[i]=read();
    for(int i=1,x,y;i<n;++i) x=read(),y=read(),ins(x,y),ins(y,x);
    dfs(1); dfs1(1,1);
    mx=0ull-1; bt(cnt,1,n); cnt=tot;
    while(m--){
        int u=read(); LL x=read(),y=read(),z=read();
        if(u==2) a[x]=z,p[x]=y,cha(1,1,n,dfn[x]);
        else{
            q=++tot; solve(x,y); LL ans=0,now=0;
            for(int i=Z-1;~i;--i)
                if(v0[q]&(1ull<<i)) ans+=1ull<<i;
                else if(v1[q]&(1ull<<i) && now+(1ull<<i)<=z) now+=1ull<<i,ans+=1ull<<i;
            printf("%llu\n",ans);
            tot=cnt;
        }
    }
    return 0;
}
阅读更多
版权声明:本文为一名蒟蒻的原创文章,大神转载的话顺便说个出处呗。 https://blog.csdn.net/cgh_Andy/article/details/79951905
上一篇多项式模板QAQ
下一篇GDOI2018退役记
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭