机器学习-线性回归-多维度特征变量
最新推荐文章于 2024-09-10 17:31:47 发布
这篇博客探讨了如何在机器学习中应用线性回归模型处理多维度特征变量的问题。文章通过预测房价的例子,引入了包含房子面积、卧室数量、楼层和房子年限等多个特征的训练集。假设函数随着特征向量维度的增加发生了变化,形式变为多个参数的线性组合。同时,文章也介绍了在多维特征下的代价函数J,并指出目标是寻找最优参数,以最小化J的值。
摘要由CSDN通过智能技术生成