机器学习-线性回归-多维度特征变量

这篇博客探讨了如何在机器学习中应用线性回归模型处理多维度特征变量的问题。文章通过预测房价的例子,引入了包含房子面积、卧室数量、楼层和房子年限等多个特征的训练集。假设函数随着特征向量维度的增加发生了变化,形式变为多个参数的线性组合。同时,文章也介绍了在多维特征下的代价函数J,并指出目标是寻找最优参数,以最小化J的值。
摘要由CSDN通过智能技术生成

1. 假设函数

之前的几篇文章里面,我们都只是介绍了单维特征变量的线性回归模型,比如预测房价的时候,我们只用了房子的面积这个维度。

接下来我们会去研究多个维度的线性回归模型

还是从预测房价这个例子入手,假设我们现在不只是单纯的考虑房子的面积,还考虑了卧室的数量、楼层、房子年限等三个维数

得到了一个新的训练集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值