提升你的LLM能力:用AskNews获取实时新闻
在当下这个信息爆炸的时代,获取最新的全球新闻并以友好的格式呈现给大型语言模型(LLM)可能是一个挑战。AskNews通过一次简单的自然语言查询,就能将最新的全球新闻信息注入任何LLM中。这篇文章将介绍如何使用AskNews工具,为你的项目带来价值。
主要内容
什么是AskNews?
AskNews是一个工具,可以每天丰富超过30万篇文章,通过翻译、总结、实体抽取和索引,将它们存入冷热向量数据库。当你查询AskNews时,会返回一个经过优化的字符串,包含所有相关增强信息(如实体、分类、翻译和总结)。这意味着开发者无需管理自己的新闻RAG系统,方便快捷。
设置与安装
AskNews集成在langchain-community包中。为了使用AskNews工具,需要首先安装相关的Python包:
pip install -U langchain-community asknews
获取API凭证可以在AskNews控制台完成,设置环境变量以便应用程序使用这些凭证:
import getpass
import os
os.environ["ASKNEWS_CLIENT_ID"] = getpass.getpass("Enter your AskNews Client ID: ")
os.environ["ASKNEWS_CLIENT_SECRET"] = getpass.getpass("Enter your AskNews Client Secret: ")
使用示例
以下是如何单独使用AskNews工具的示例:
from langchain_community.tools.asknews import AskNewsSearch
tool = AskNewsSearch(max_results=2)
results = tool.invoke({"query": "Effect of fed policy on tech sector"})
# 使用API代理服务提高访问稳定性
print(results)
常见问题和解决方案
-
访问问题:由于某些地区的网络限制,无法直接访问API。为解决这一问题,可以使用API代理服务,以提高访问的稳定性。
-
结果不准确:如果查询返回的结果不如预期,可以尝试更改查询关键词,或调整
max_results的值以获取更多候选结果进行筛选。
代码示例
下面是一个完整的示例,展示如何将AskNews与OpenAI的功能结合使用:
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter your OpenAI API Key: ")
from langchain import hub
from langchain.agents import AgentExecutor, create_openai_functions_agent
from langchain_community.tools.asknews import AskNewsSearch
from langchain_openai import ChatOpenAI
prompt = hub.pull("hwchase17/openai-functions-agent")
llm = ChatOpenAI(temperature=0)
asknews_tool = AskNewsSearch()
tools = [asknews_tool]
agent = create_openai_functions_agent(llm, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools)
response = agent_executor.invoke({"input": "How is the tech sector being affected by fed policy?"})
print(response['output'])
总结与进一步学习资源
使用AskNews可以极大地简化从新闻文章中获取和整理信息的过程,为LLM提供优质的数据输入。此外,若想深入了解并扩展此工具的使用,可以参考以下资源:
- AskNews官方文档:AskNews Documentation
- 新闻数据管理最佳实践:Vector Databases in NLP
- 用于Python的其他数据处理库:LangChain Community
参考资料
- AskNews 产品页面: AskNews
- LangChain Documentation: LangChain
- OpenAI API 认证信息:OpenAI API
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—
766

被折叠的 条评论
为什么被折叠?



