[普及]NOIP 2015 推销员

版权声明:本文为博主原创文章,转发请注明地址 https://blog.csdn.net/chai_jing/article/details/52957741

题目描述

阿明是一名推销员,他奉命到螺丝街推销他们公司的产品。螺丝街是一条死胡同,出口与入口是同一个,街道的一侧是围墙,另一侧是住户。螺丝街一共有N家住户,第i家住户到入口的距离为Si米。由于同一栋房子里可以有多家住户,所以可能有多家住户与入口的距离相等。阿明会从入口进入,依次向螺丝街的X家住户推销产品,然后再原路走出去。

阿明每走1米就会积累1点疲劳值,向第i家住户推销产品会积累Ai点疲劳值。阿明是工作狂,他想知道,对于不同的X,在不走多余的路的前提下,他最多可以积累多少点疲劳值。
输入输出格式
输入格式:

第一行有一个正整数N,表示螺丝街住户的数量。

接下来的一行有N个正整数,其中第i个整数Si表示第i家住户到入口的距离。数据保证S1≤S2≤…≤Sn<10^8。

接下来的一行有N个正整数,其中第i个整数Ai表示向第i户住户推销产品会积累的疲劳值。数据保证Ai<10^3。

输出格式:

输出N行,每行一个正整数,第i行整数表示当X=i时,阿明最多积累的疲劳值。

输入输出样例
输入样例#1:

5
1 2 3 4 5
1 2 3 4 5

输出样例#1:

15
19
22
24
25

输入样例#2:

5
1 2 2 4 5
5 4 3 4 1

输出样例#2:

12
17
21
24
27

说明

【输入输出样例1说明】

X=1:向住户5推销,往返走路的疲劳值为5+5,推销的疲劳值为5,总疲劳值为15。

X=2:向住户4、5推销,往返走路的疲劳值为5+5,推销的疲劳值为4+5,总疲劳值为5+5+4+5=19。

X=3:向住户3、4、5推销,往返走路的疲劳值为5+5,推销的疲劳值3+4+5,总疲劳值为5+5+3+4+5=22。

X=4:向住户2、3、4、5推销,往返走路的疲劳值为5+5,推销的疲劳值2+3+4+5,总疲劳值5+5+2+3+4+5=24。

X=5:向住户1、2、3、4、5推销,往返走路的疲劳值为5+5,推销的疲劳值1+2+3+4+5,总疲劳值5+5+1+2+3+4+5=25。

【输入输出样例2说明】

X=1:向住户4推销,往返走路的疲劳值为4+4,推销的疲劳值为4,总疲劳值4+4+4=12。

X=2:向住户1、4推销,往返走路的疲劳值为4+4,推销的疲劳值为5+4,总疲劳值4+4+5+4=17。

X=3:向住户1、2、4推销,往返走路的疲劳值为4+4,推销的疲劳值为5+4+4,总疲劳值4+4+5+4+4=21。

X=4:向住户1、2、3、4推销,往返走路的疲劳值为4+4,推销的疲劳值为5+4+3+4,总疲劳值4+4+5+4+3+4=24。或者向住户1、2、4、5推销,往返走路的疲劳值为5+5,推销的疲劳值为5+4+4+1,总疲劳值5+5+5+4+4+1=24。

X=5:向住户1、2、3、4、5推销,往返走路的疲劳值为5+5,推销的疲劳值为5+4+3+4+1,

总疲劳值5+5+5+4+3+4+1=27。

【数据说明】

对于20%的数据,1≤N≤20;

对于40%的数据,1≤N≤100;

对于60%的数据,1≤N≤1000;

对于100%的数据,1≤N≤100000。


【分析】
整日被普及组折磨…
这道题用贪心,然后每选择一个点累加进答案后,前面的点的距离都没用了,所以前面的直接扔进堆里。再扫描这个点之后的,计算权值,如果>堆顶权值,把它与这个点之间的所有点都扔进去…
复杂度不稳定,就是个卡时间算法


【代码】

//NOIP 2015 推销员 
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#include<cmath>
#include<vector>
#define fo(i,j,k) for(i=j;i<=k;i++)
using namespace std;
const int mxn=100010;
int n,ans;
pair <int,int> a[mxn];
priority_queue < pair<int,int> > q;
int main()
{
//  freopen("salesman.in","r",stdin);
//  freopen("salesman.out","w",stdout); 
    int i,j,mx=0,next,now=1;
    scanf("%d",&n);
    fo(i,1,n) scanf("%d",&a[i].second);
    fo(i,1,n) scanf("%d",&a[i].first);
    fo(i,1,n)
      if(a[i].second*2+a[i].first>mx) ans=a[i].second*2+a[i].first,now=i;
    fo(i,1,now-1) q.push(a[i]);
    printf("%d\n",a[now].second*2+a[now].first);
    fo(i,2,n)
    {
        next=now;
        mx=q.top().first;
        fo(j,now+1,n)
          if((a[j].second-a[now].second)*2+a[j].first>mx)
            mx=(a[j].second-a[now].second)*2+a[j].first,next=j;
        a[next].first+=(a[next].second-a[now].second)*2;
        if(now!=next) q.push(a[next]); 
        fo(j,now+1,next-1) q.push(a[j]);
        ans+=q.top().first;
        q.pop();
        printf("%d\n",ans);
        now=next;
    }
    return 0;
}
阅读更多
换一批

没有更多推荐了,返回首页