用起来不太朴素的朴素贝叶斯及其Python实现

本文介绍了朴素贝叶斯分类器的工作原理,包括贝叶斯定理的应用和属性条件独立性假设。虽然朴素,但在许多情况下表现良好。Python实现表明,朴素贝叶斯分类器在葡萄酒数据集上的准确率高达95%-100%。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作为一个听起来非常Naive的分类器,Naive Bayes Classifier使用了“属性条件独立性假设”,也就是假设所有属性相互独立。分类器的目的,是对任一测试样本 x ,利用贝叶斯定理求出后验概率最大的输出类。假设y一共可以取N个标签, yc 代表第c类。那么我们来看一下贝叶斯定理:

P(yc|x)=P(yc)P(x|yc)P(x)

来直观理解一下贝叶斯定理,左边,求的是当我们拿到了一个新样本 x ,它属于 yc 这一类的概率有多大?右边, P(yc) 代表了类别的先验概率,可以理解为在拿到样本之前,认为某一类出现的概率有多大,这个概率是已知的,也是通过统计得到的,比如说,我统计了过往一千年杭州地区国庆节的下雨情况,那么就可以推断出今年的下雨概率。那么后验概率,就是在先验概率的基础上进行修正得到的。在这个例子中,后验概率就是式子左边,我们想要得到的东西,如果我们没有额外的信息,我们就直接根据先验概率——过往千年的下雨统计概率得到它。但是现在,有了额外信息, x 中明天是否有台风的这个属性变为1,也就是我们知道国庆节要来台风了,那是否对国庆节下雨的概率要加一个修正?这个修正就是右边存在的意义。

我们来看一下贝叶斯定理的计算。 P(y<

python写的一段贝叶斯网络的程序 This file describes a Bayes Net Toolkit that we will refer to now as BNT. This version is 0.1. Let's consider this code an "alpha" version that contains some useful functionality, but is not complete, and is not a ready-to-use "application". The purpose of the toolkit is to facilitate creating experimental Bayes nets that analyze sequences of events. The toolkit provides code to help with the following: (a) creating Bayes nets. There are three classes of nodes defined, and to construct a Bayes net, you can write code that calls the constructors of these classes, and then you can create links among them. (b) displaying Bayes nets. There is code to create new windows and to draw Bayes nets in them. This includes drawing the nodes, the arcs, the labels, and various properties of nodes. (c) propagating a-posteriori probabilities. When one node's probability changes, the posterior probabilities of nodes downstream from it may need to change, too, depending on firing thresholds, etc. There is code in the toolkit to support that. (d) simulating events ("playing" event sequences) and having the Bayes net respond to them. This functionality is split over several files. Here are the files and the functionality that they represent. BayesNetNode.py: class definition for the basic node in a Bayes net. BayesUpdating.py: computing the a-posteriori probability of a node given the probabilities of its parents. InputNode.py: class definition for "input nodes". InputNode is a subclass of BayesNetNode. Input nodes have special features that allow them to recognize evidence items (using regular-expression pattern matching of the string descriptions of events). OutputNode.py: class definition for "output nodes". OutputBode is a subclass of BayesNetNode. An output node can have a list of actions to be performed when the node's posterior probability exceeds a threshold ReadWriteSigmaFiles.py: Functionality for loading and saving Bayes nets in an XML format. SampleNets.py: Some code that constructs a sample Bayes net. This is called when SIGMAEditor.py is started up. SIGMAEditor.py: A main program that can be turned into an experimental application by adding menus, more code, etc. It has some facilities already for loading event sequence files and playing them. sample-event-file.txt: A sequence of events that exemplifies the format for these events. gma-mona.igm: A sample Bayes net in the form of an XML file. The SIGMAEditor program can read this type of file. Here are some limitations of the toolkit as of 23 February 2009: 1. Users cannot yet edit Bayes nets directly in the SIGMAEditor. Code has to be written to create new Bayes nets, at this time. 2. If you select the File menu's option to load a new Bayes net file, you get a fixed example: gma-mona.igm. This should be changed in the future to bring up a file dialog box so that the user can select the file. 3. When you "run" an event sequence in the SIGMAEditor, the program will present each event to each input node and find out if the input node's filter matches the evidence. If it does match, that fact is printed to standard output, but nothing else is done. What should then happen is that the node's probability is updated according to its response method, and if the new probability exceeds the node's threshold, then its successor ("children") get their probabilities updated, too. 4. No animation of the Bayes net is performed when an event sequence is run. Ideally, the diagram would be updated dynamically to show the activity, especially when posterior probabilities of nodes change and thresholds are exceeded. To use the BNT, do three kinds of development: A. create your own Bayes net whose input nodes correspond to pieces of evidence that might be presented and that might be relevant to drawing inferences about what's going on in the situation or process that you are analyzing. You do this by writing Python code that calls constructors etc. See the example in SampleNets.py. B. create a sample event stream that represents a plausible sequence of events that your system should be able to analyze. Put this in a file in the same format as used in sample-event-sequence.txt. C. modify the code of BNT or add new modules as necessary to obtain the functionality you want in your system. This could include code to perform actions whenever an output node's threshold is exceeded. It could include code to generate events (rather than read them from a file). And it could include code to describe more clearly what is going on whenever a node's probability is updated (e.g., what the significance of the update is -- more certainty about something, an indication that the weight of evidence is becoming strong, etc.)
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值