问题:
如何在企业业务(如:供应链业务)与算法(优化、预测等算法)之间,建立有效的“桥梁”,也就是建模,使算法能真正解决业务问题,且可持续优化。
可以使用两条路线:
-
用AI大模型来帮助建模。
-
如果不用大模型,其他智能方式。
1. 问题本质分析
企业供应链建模,需要解决三个核心问题:
-
业务抽象:把复杂多变的供应链业务,提取成清晰、结构化的模型。
-
数据映射:业务对象与算法输入输出的对应关系。
-
算法适配:算法能在模型上合理运行,并给出业务有用的决策或优化建议。
所以,建模方法 = 业务语义 → 数据结构 → 算法接口 → 优化输出。
2. 用大模型辅助建模的方法
可以用AI大模型(如GPT-4、企业自训Llama3/InternLM)做结构化的"认知-建模-推演"工作。具体方法是:
2.1 业务场景到建模的智能流程
阶段 | 方法 | 工具示例 |
---|---|---|
业务理解 |