结点定义
//Binary Tree Node
typedef struct node
{
int data;
node* lchild,rchild; //左孩子右孩子
}BTNode;
中序非递归:前中后,
1 首先根节点,将其压进栈中
2 如果当前结点非空,将该结点压入栈中,然后将其左结点赋值给当前结点;
3 如果当前结点为空,输出当前的结点,弹出栈顶的结点,将其右结点赋值给当前节点; 4,循环2和3
void InOrderWithoutRecursio(BiTNode * T)
{
//空树
if (T==null)
{
return;
}
//树非空
BiTNode* p=T;
stack<BiTNode*> s;
while(!s.empty()||P)
{
if(p)
{
s.push(p);
p=p->lchild;
}
else
{
p=s.top();
s.pop();
cout<<p->data;
p=p->rchild;
}
}
return ok;
}
前序非递归:中前后
1 首先根节点,将其压进栈中,
2 如果当前结点非空,输出当前的结点,将该结点压入栈中,然后将其左结点赋值给当前结点;
3 如果当前结点为空,弹出栈顶的结点,将其右结点赋值给当前节点;
4,循环2和3
void PreWithoutRecursio(BiTNode * T)
{
if (T==null)
return ;
BiTNode* p=T;
stack<BiTNode*> s;
while(!s.empty()||p)
{
if (P)
{
cout<<p->data;
s.push(p);
p=p->lchild;
}
else
{
p=s.top();
s.pop();
p=p->rchild;
}
}
}
后序非递归:前后中
后序遍历递归定义:先左子树,后右子树,再根节点。后序遍历的难点在于:需要判断上次访问的节点是位于左子树,还是右子树。若是位于左子树,则需跳过根节点,先进入右子树,再回头访问根节点;若是位于右子树,则直接访问根节点。直接看代码,代码中有详细的注释。
void PostWithoutRecursio(BiTNode * T)
{
if (T==null)
{
return;
}
stack<BiTNode*> s;
//pCur:当前访问的的节点,pLastVisit:上次访问的节点
BiTNode *pCur,*pLatVisit;
pCur=T;
pLastVisit=null;
//先把pCur移动到左子树最下边
while(pCur)
{
s.push(pCur);
pCur=pCur->lchild;
}
while(!s.empty())
{
//走到这里,pCur都是空,并已经遍历到左子树的底部
pCur=s.top();
s.pop();
//一个根节点被访问的前提条件:无右子树或者右子树已被访问
if (pCur->rchild==null||pCur->rchild==pLastVisit)
{
cout<<pCur->data;
//修改最近访问的节点
pLastVisit=pCur;
}
/*这里的else语句可换成带条件的else if:
else if (pCur->lchild == pLastVisit)//若左子树刚被访问过,则需先进入右子树(根节点需再次入栈)
因为:上面的条件没通过就一定是下面的条件满足。仔细想想!
*/
else
{
//根节点再次入栈
s.push(pCur);
//进入右子树,且可肯定右子树一定不为空
pCur=pCur->rchild;
while(pCur)
{
s.push(pCur);
pCur=pCur->lchild;
}
}
}
}
参考:http://blog.csdn.net/zhangxiangdavaid/article/details/37115355

被折叠的 条评论
为什么被折叠?



