二叉树前中后 非递归算法

结点定义

//Binary Tree Node
typedef struct node
{
    int data;
    node* lchild,rchild;  //左孩子右孩子
}BTNode;

中序非递归:前中后,
1 首先根节点,将其压进栈中
2 如果当前结点非空,将该结点压入栈中,然后将其左结点赋值给当前结点;
3 如果当前结点为空,输出当前的结点,弹出栈顶的结点,将其右结点赋值给当前节点; 4,循环2和3

void InOrderWithoutRecursio(BiTNode * T)
{
   //空树 
    if (T==null)
    {
        return;
    }
    //树非空
    BiTNode* p=T;
    stack<BiTNode*> s;
    while(!s.empty()||P)
    {
        if(p)
        {
            s.push(p);
            p=p->lchild;
         } 
         else
         {
            p=s.top();
            s.pop();
            cout<<p->data;
            p=p->rchild;
         }  
    } 
    return ok;
}

前序非递归:中前后
1 首先根节点,将其压进栈中,
2 如果当前结点非空,输出当前的结点,将该结点压入栈中,然后将其左结点赋值给当前结点;
3 如果当前结点为空,弹出栈顶的结点,将其右结点赋值给当前节点;
4,循环2和3

void PreWithoutRecursio(BiTNode * T)
{
    if (T==null)
    return ;
    BiTNode* p=T;
    stack<BiTNode*> s;
    while(!s.empty()||p)
    {
        if (P)
        {
            cout<<p->data;
            s.push(p);
            p=p->lchild;
        }
        else
        {
            p=s.top();
            s.pop();
            p=p->rchild;
        }
    }
}

后序非递归:前后中
后序遍历递归定义:先左子树,后右子树,再根节点。后序遍历的难点在于:需要判断上次访问的节点是位于左子树,还是右子树。若是位于左子树,则需跳过根节点,先进入右子树,再回头访问根节点;若是位于右子树,则直接访问根节点。直接看代码,代码中有详细的注释。

void PostWithoutRecursio(BiTNode * T)
{
    if (T==null)
    {
        return;
    }
    stack<BiTNode*> s;
    //pCur:当前访问的的节点,pLastVisit:上次访问的节点 
    BiTNode *pCur,*pLatVisit;
    pCur=T;
    pLastVisit=null;
    //先把pCur移动到左子树最下边
    while(pCur)
    {
        s.push(pCur);
        pCur=pCur->lchild;
     } 
     while(!s.empty())
     {
        //走到这里,pCur都是空,并已经遍历到左子树的底部 
        pCur=s.top();
        s.pop();
        //一个根节点被访问的前提条件:无右子树或者右子树已被访问 
        if (pCur->rchild==null||pCur->rchild==pLastVisit)
        {
            cout<<pCur->data;
            //修改最近访问的节点 
            pLastVisit=pCur;
        }
        /*这里的else语句可换成带条件的else if: 
        else if (pCur->lchild == pLastVisit)//若左子树刚被访问过,则需先进入右子树(根节点需再次入栈) 
        因为:上面的条件没通过就一定是下面的条件满足。仔细想想! 
        */
        else
        {
            //根节点再次入栈 
            s.push(pCur);
            //进入右子树,且可肯定右子树一定不为空 
            pCur=pCur->rchild;
            while(pCur)
            {
                s.push(pCur);
                pCur=pCur->lchild;
            }
        }

     }
}

参考:http://blog.csdn.net/zhangxiangdavaid/article/details/37115355

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值