算法复杂度分析



关键概念
  要分析算法的复杂度,通常需要分析循环的运行.

一,假如,某个循环体的复杂度是O(1),那么这个循环的时间复杂度就是O(n).
  for(int i = 0; i < n; i++){
    //一些列复杂度为O(1)的步骤....
  }
通常,如果某个循环结构以线性方式运行n次,并且循环体的时间复杂度都是O(1),那么该循环的复杂度就是O(n).
即使,该循环跳过某些常数部分,只要跳过的部分是线性的,那么该循环体的时间复杂度仍就是O(n).
比如
  int count = 1;
  while(count < n){
    count += 2;
    //一些列复杂度为O(1)的步骤....
  }
时间复杂度还是O(n)

二,如果循环体的复杂度是对数级的 如下
  int count = 1;
  while(count < n){
    count *= 2;
    //一些列复杂度为O(1)的步骤....
  }
该循环是O(logn)的, 通常情况是2为底的 也就是O(log2n)

关键概念
  循环的时间复杂度等于该循环体的复杂度乘以循环的次数...

三,嵌套循环复杂度分析...
  for(int count1 = 0; count1 < n; count1++){
    for(int??count2 = 0; count2 < n; count2++){
      //一些列复杂度为O(1)的步骤....
    }
  }
在这种情况下应该 先计算内层循环的时间复杂度,然后用内层的复杂度乘以外层循环的次数.
最内层循环体的时间复杂度都是O(1)所以循环n次也就是O(n) 在乘以最外层for的n次.
所以得出结论 2层嵌套循环的时间复杂度 = O(1) * n*n = O(n2)

    在分析嵌套循环复杂度的时候必将内层循环和外层虚幻都考虑进来

四,方法调用的复杂度分析
假如有如下代码
  for(int count = 0; count < n; count++){
    printsum(n);
  }
循环的阶次等于循环体的阶次乘以循环的次数.像这种情况循环体里头是一个方法的调用,那么这个循环体的时间复杂度如何呢!
这个方法就是打印1~n的和.所以必须先计算方法体的的时间复杂度.
  public void printsum(int count){
    int sum = 1;
    for(int i= 0; i       sum += i;
    }    
    System.out.print(sum);
  }
记住,只有可运行的语句才会增加时间复杂度,因此,上面方法里的内容除了循环之外,其余的可运行语句的复杂度都是O(1),
所以printsum的时间复杂度 = for的 O(n)+O(1) = 忽略常量 = O(n)

但是回想一下,我们让程序打印1~n的和不需要用for循环 记得初中数学课上老师就给出了个公式 num = n*(n+1)/2


  public void printsum(int count){
    int sum = 1;
    sum = count * (count+1)/2;    
    System.out.print(sum);
  }
此时的 printsum 方法的阶次就是O(1) -------->意味着最外层调用此方法的循环复杂度就从 O(n2) 改良为 O(n)
这是一个很大的提高.从这点就可以看出简单算法和高效算法之间的差别了.


五如果一个方法体是由多个方法调用and多个循环组成的,那么其复杂度又如何!

  public void suixiangMethod(int n){
    printsum(n);//1.1
    for(int i= 0; i       printsum(n);
    }
    for(int i= 0; i       for(int k=0; k
        System.out.print(i,k);
      }
  }
suixiangMethod 方法的时间复杂度需要计算方法体的各个成员的复杂度?
也就是1.1+1.2+1.3 = O(1)+O(n)+O(n2) ----> 忽略常数 和 非主要项 == O(n2)



当我们评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度,因此,在算法分析时,往往对两者不予区分,经常是将渐近时间复杂度T(n)=O(f(n))简称为时间复杂度,其中的f(n)一般是算法中频度最大的语句频度。

此外,算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。但是我们总是考虑在最坏的情况下的时间复杂度。以保证算法的运行时间不会比它更长。

常见的时间复杂度,按数量级递增排列依次为:常数阶O(1){Hash表的查找}、对数阶O(log2n){二分查找}、线性阶O(n)、线性对数阶O(nlog2n){快速排序的平均复杂度}、平方阶O(n^2){冒泡排序}、立方阶O(n^3){求最短路径的Floyd算法}、k次方阶O(n^k)、指数阶O(2^n){汉诺塔}。

下面我们通过例子加以说明,让大家碰到问题时知道如何去解决。
1、设三个函数f,g,h分别为 f(n)=100n^3+n^2+1000 , g(n)=25n^3+5000n^2 , h(n)=n^1.5+5000nlgn 
请判断下列关系是否成立:
(1) f(n)=O(g(n)) 
(2) g(n)=O(f(n)) 
(3) h(n)=O(n^1.5)
(4) h(n)=O(nlgn)
这里我们复习一下渐近时间复杂度的表示法T(n)=O(f(n)),这里的"O"是数学符号,它的严格定义是"若T(n)和f(n)是定义在正整数集合上的 两个函数,则T(n)=O(f(n))表示存在正的常数C和n0 ,使得当n≥n0时都满足0≤T(n)≤C?f(n)。"用容易理解的话说就是这两个函数当整型自变量n趋向于无穷大时,两者的比值是一个不等于0的常 数。这么一来,就好计算了吧。

(1)成立。题中由于两个函数的最高次项都是n^3,因此当n→∞时,两个函数的比值是一个常数,所以这个关系式是成立的。
(2)成立。与上同理。
(3)成立。与上同理。
(4)不成立。由于当n→∞时n^1.5比nlgn递增的快,所以h(n)与nlgn的比值不是常数,故不成立。

2、设n为正整数,利用大"O"记号,将下列程序段的执行时间表示为n的函数。
(1) i=1; k=0 
while(i<n)
{ k=k+10*i;i++;

解答:T(n)=n-1, T(n)=O(n), 这个函数是按线性阶递增的。
(2) x=n; // n>1 
while (x>=(y+1)*(y+1))
y++;
解答:T(n)=n1/2 ,T(n)=O(n1/2), 最坏的情况是y=0,那么循环的次数是n1/2次,这是一个按平方根阶递增的函数。
(3) x=91; y=100; 
while(y>0)
if(x>100)
{x=x-10;y--;}
else x++;
解答: T(n)=O(1), 这个程序看起来有点吓人,总共循环运行了1000次,但是我们看到n没有? 没。这段程序的运行是和n无关的,就算它再循环一万年,我们也不管他,只是一个常数阶的函数。

规则:有如下复杂度关系

c < log2N < n < n * Log2N < n^2 < n^3 < 2^n < 3^n < n!

其中c是一个常量,如果一个算法的复杂度为c 、 log2N 、n 、 n*log2N ,那么这个算法时间效率比较高 ,如果是 2^n , 3^n ,n!,那么稍微大一些的n就会令这个算法不能动了,居于中间的几个则差强人意。

我们常需要描述特定算法相对于 n(输入元素的个数 )需要做的工作量。在一组未排序的数据中检索,所需的时间与 n成正比;如果是对排序数据用二分检索,花费的时间正比于logn。排序时间可能正比于n^2或者nlogn。

我们希望能够比较算法的运行时间和空间要求,并使这种比较能与程序设计语言、编译系统、机器结构、处理器的速度及系统的负载等复杂因素无关。

为了这个目的,人们提出了一种标准的记法,称为“大O记法”.在这种描述中使用的基本参数是 n,即问题实例的规模,把复杂性或运行时间表达为n的函数 。这里的“O”表示量级 (order),比如说“二分检索是 O(logn)的”,也就是说它需要“通过logn量级的步骤去检索一个规模为n的数组”记法O ( f(n) )表示当n增大时,运行时间至多将以正比于f(n)的速度增长。这种渐进估计对算法的理论分析和大致比较是非常有价值的,但在实践中细节也可能造成差异。例如,一个低附加代价的O(n2)算法在n较小的情况下可能比一个高附加代价的O(nlogn)算法运行得更快。当然,随着n足够大以后,具有较慢上升函数的算法必然工作得更快。

  
  

Temp=i; i=j; j=temp;                    

以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。

算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时 间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。


  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值