线程通信举例1 管程法

//生产者生产物品,消费者消费物品

package Syco;

public class Contactbetwen {

    public static void main(String[] args) {
        contain contain = new contain();
        new consumer(contain).start();
        new producer(contain).start();

    }
}


class food{
int id;

    public food(int id) {
        this.id = id;
    }
}

class consumer extends Thread{

    contain contain;
    public consumer(contain contain){

        this.contain=contain;

    }

    @Override
    public void run() {
        for (int i = 1; i <1000 ; i++) {
            synchronized(contain){
                if(contain.count==0){
                    try {

                        contain.wait();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }

                }
                contain.count--;
                food f=contain.f[contain.count];
                System.out.println("消费了第"+f.id+"个");
                contain.notifyAll();

            }


        }
    }
}


class producer extends Thread{

    contain contain;
    public  producer(contain contain){

        this.contain=contain;
    }

    @Override
    public void run() {
        for (int i = 1; i < 1000; i++) {
            synchronized (contain){
                if(contain.count==10){

                    try {
                        contain.wait();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }

                }


                contain.f[contain.count]= new food(i);
                contain.count++;
                System.out.println("生产了第"+i+"件");
                contain.notifyAll();

            }

        }
    }
}

class contain {

food[] f=new food[10];
int count=0;




}
"java大数据人工智能培训学校全套教材"系列课程由1000集视频构成,基本就 是1)时下流行的java培训学校主流内部教材,2)和市面上培训学校的通 行的课程体系几乎一样。所以这套课程都能自己学下来,等于上了培训学校一次,完全可以找个java工程师的工作了。   通过学习卷积神经网络概述,为什么引入神经网络来做识别,判断,预测,训练模型,激活函数,sigmoid激活函数,导数和切线,sigmoid激活函数如何求导,链式法则,梯度,梯度下降法与delta法则,BP(back propagation)误差逆传播神经网络卷积到底有什么作用?如何做到特征提取,池化的名字由来,dropout,Anaconda Prompt的用法,Jupyter notebook的用法,Spyder的用法,建立安装Tensorflow所需的Anaconda虚拟环境,如何在Anaconda虚拟环境安装Tensorflow与Keras概念等让大家对人工智能,卷积神经网络快速入门。 课程特色:专业细致,偏案例,理论强。 课程软件使用:Anaconda,Spyder,Jupyter notebook 重要声明: 1) 如果感觉噪音大,可以选择不用耳机,加音箱或用电脑原声  2) 既然我们的名字叫人工智能深度学习卷积神经网络入门,这个课程的特点就在于成本最低的, 让你最快速的,最容易的入门。人工智能深度学习卷积神经网络入门的最大的难点在于入门入不了,从而最终放弃。俗话说师傅领进门,修行在个人。只要入了门了,后面的事都好办。选课前,务必注意本章的学习目标和内容。想学更多,注意后边的课程。
©️2020 CSDN 皮肤主题: 技术工厂 设计师:CSDN官方博客 返回首页