# 引言

（plus:其实从这张图中也可以得出一个不严谨的结论,函数越简单，其拟合能力可能越好。这里面其实也蕴含了一些哲学道理与生活哲理，极简生活哲学，扯远了。。。。）

# 减轻过拟合的方法

## 规范化

$C\left(w,b\right)=\frac{1}{2n}\sum _{x}||y\left(x\right)-a|{|}^{2}+\frac{\lambda }{2n}\sum _{w}{w}^{2}$$C(w,b) = \frac{1}{2n} \sum_{x} || y(x) - a ||^{2} + \frac{\lambda}{2n} \sum_w w^2$

$C={C}_{0}+\frac{\lambda }{2n}\sum _{w}{w}^{2}$$C = C_0 + \frac{\lambda}{2n} \sum_w w^2$

${w}_{k}\to {w}_{k}^{{}^{\prime }}={w}_{k}-\eta \frac{\mathrm{\partial }C}{\mathrm{\partial }{w}_{k}}-\frac{\eta \lambda }{n}{w}_{k}$$w_{k}\rightarrow w_{k}^{'} = w_{k} - \eta \frac{\partial C}{\partial w_{k}} -\frac{\eta \lambda}{n} w_k$

${b}_{l}\to {b}_{l}^{{}^{\prime }}={b}_{l}-\eta \frac{\mathrm{\partial }C}{\mathrm{\partial }{b}_{l}}$$b_{l}\rightarrow b_{l}^{'} = b_{l} - \eta \frac{\partial C}{\partial b_{l}}$

### 为什么规范化能够减轻过拟合

${w}_{k}\to {w}_{k}^{{}^{\prime }}={w}_{k}-\eta \frac{\mathrm{\partial }C}{\mathrm{\partial }{w}_{k}}-\frac{\eta \lambda }{n}{w}_{k}=\left(1-\frac{\eta \lambda }{n}\right){w}_{k}-\eta \frac{\mathrm{\partial }C}{\mathrm{\partial }{w}_{k}}$$w_{k}\rightarrow w_{k}^{'} = w_{k} - \eta \frac{\partial C}{\partial w_{k}} -\frac{\eta \lambda}{n} w_k = (1 - \frac{\eta \lambda}{n})w_{k} - \eta \frac{\partial C}{\partial w_{k}}$

${w}_{k}\to {w}_{k}^{{}^{\prime }}={w}_{k}-\eta \frac{\mathrm{\partial }C}{\mathrm{\partial }{w}_{k}}$$w_{k}\rightarrow w_{k}^{'} = w_{k} - \eta \frac{\partial C}{\partial w_{k}}$

• 广告
• 抄袭
• 版权
• 政治
• 色情
• 无意义
• 其他

120