一、初识describe()函数
在数据分析和处理的过程中,我们经常需要了解数据的基本统计信息,如均值、标准差、最小值、最大值等。pandas库中的describe()函数为我们提供了这样的功能,它可以快速生成数据集的描述性统计信息。
二、describe()函数的基本用法
describe()函数是pandas库中DataFrame和Series对象的一个方法,它默认返回以下统计信息:
count:非空值的数量mean:平均值std:标准差min:最小值25%:第一四分位数(Q1)-----数据总数除以4,就是第一四分位数50%:第二四分位数(中位数,Q2)-----数据总数除以4*2,就是第二四分位数75%:第三四分位数(Q3)-----数据总数除以4*3,就是第三四分位数max:最大值
使用示例:
| 1 2 3 4 5 6 7 8 9 10 11 |
|
输出:
A B C
count 5.000000 5.000000 5.000000
mean 3.000000 3.000000 30.000000
std 1.581139 1.581139 15.811388
min 1.000000 1.000000 10.000000
25% 2.000000 2.000000 20.000000
50% 3.000000 3.000000 30.000000
75% 4.000000 4.000000 40.000000
max 5.000000 5.000000 50.000000
三、定制describe()函数的输出
describe()函数提供了多个参数,允许我们定制输出的统计信息。
percentiles:指定要包括的其他百分位数,例如percentiles=[.25, .5, .75]将返回第一、第二和第三四分位数。include:指定要包括的数据类型,默认为'all',可以设置为'all','nums', 或'object'。exclude:指定要排除的数据类型。
使用示例:
| 1 2 3 4 5 6 7 8 9 10 11 |
|
输出:
A B C
count 5.000000 5.000000 5.000000
mean 3.000000 3.000000 30.000000
std 1.581139 1.581139 15.811388
min 1.000000 1.000000 10.000000
30% 2.200000 2.200000 22.000000
50% 3.000000 3.000000 30.000000
60% 3.400000 3.400000 34.000000
90% 4.600000 4.600000 46.000000
max 5.000000 5.000000 50.000000
四、describe()函数与数据可视化
describe()函数输出的统计信息经常与数据可视化结合使用,以更直观地了解数据的分布。例如,我们可以使用matplotlib库来绘制箱线图(boxplot)。
使用示例:
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
|
效果展示:

五、深入理解统计指标
了解describe()函数输出的统计指标对于正确解读数据至关重要。例如,标准差可以告诉我们数据集的离散程度,中位数则可以告诉我们数据集的中心趋势,而不受极端值的影响。
本文介绍了Python pandas库中的df.describe()函数,用于获取数据集的描述性统计信息,包括均值、标准差、四分位数等。通过示例展示了基本用法、定制输出和与数据可视化的结合,帮助理解统计指标在数据分析中的作用。
4393

被折叠的 条评论
为什么被折叠?



