网络安全与人工智能
ChaoFeiLi
这个作者很懒,什么都没留下…
展开
-
Python 绘制混淆矩阵
这篇的文章的好多代码都源自于博客,我只是把他们重新整合,然后变成了我需要的漂亮的,适合放在论文中图片代码。参考链接:https://blog.csdn.net/weixin_38314865/article/details/88989506https://www.cnblogs.com/ZHANG576433951/p/11233159.htmlhttps://blog.csdn.net/qq_37851620/article/details/100642566?utm_source=ap.原创 2021-05-22 15:40:03 · 3702 阅读 · 0 评论 -
Improve Sequence Generation of GAN
原创 2020-11-26 20:35:01 · 182 阅读 · 0 评论 -
Feature Extraction
原创 2020-11-26 19:57:23 · 516 阅读 · 0 评论 -
GAN:Tips for Improving GAN
GAN->WGAN原创 2020-11-26 12:13:25 · 223 阅读 · 0 评论 -
fGAN:General Framework of GAN
原创 2020-11-26 09:47:55 · 248 阅读 · 0 评论 -
Theory behind GAN
G0和G1其实差的不是特别多,所以在update的时候,学习率应该小一点。但是D可以大一点原创 2020-11-25 14:50:18 · 204 阅读 · 0 评论 -
Unsupervised Conditional Generation
原创 2020-11-25 09:06:56 · 156 阅读 · 0 评论 -
cGAN
conditional GAN原创 2020-11-24 19:36:47 · 179 阅读 · 0 评论 -
利普希茨连续(Lipschitz continuous)及其应用
参考链接:https://www.zhihu.com/question/51809602https://zhuanlan.zhihu.com/p/27554191https://blog.csdn.net/FrankieHello/article/details/105739610目录通俗解释定义直观解释通俗解释以陆地为例。岛屿:不连续一般陆地:连续丘陵:李普希兹连续悬崖:非李普希兹连续山包:可导平原:线性半岛:非凸想了半天用什么来表达亚连续(se.原创 2020-11-24 14:28:34 · 27332 阅读 · 0 评论 -
NAS-based on cell DARTS
很多人工设计的神经结构是由重复的结构单元组成的,例如:ResNet结构由多个残差单元组成,GoogLeNet结构由 Inception 结构单元组成。由此启发,NAS 算法通过搜索结构单元(cell)来替代搜索整个神经结构。NASNet提出了基于cell结构的搜索空间。在这种搜索空间中,NAS算法搜索2种类型的cell,一种为normal cell,另一种为reduction cell。normal cell的输出和输入尺寸保持一致,而reduction cell的输出尺寸是输入尺寸的一半。在搜索完 ce.原创 2020-11-20 10:41:01 · 1026 阅读 · 0 评论 -
multi-label多标签准确率的计算方法
sigmoid得到结果之后与正确答案进行点乘操作然后再叠加就是最后的加权准确率比如正确标签是[0 1 1 0], 预测结果是[0.1 0.8 0.6 0.2], 那么加权后的结果是[0 0.8 0.6 0],sum([0 0.8 0.6 0])>1,则为1,否则为0。因为只有每个标签都>0.5才算是正确。但是如果有一个类是单标签,那就会出现问题了。...原创 2020-11-18 17:10:15 · 2873 阅读 · 0 评论 -
numpy的dtype,astype
综述:np类型的a如果直接修改如:a.dtype='int16',那么直接会修改a,会导致长度的不一致,如果要直接修改则要采用astype方法如:b=a.astype('int16'),a保持不变,b的长度等于a,并且type由a变成了int16,或者调用b=np.array(a,dtype='int16'),效果和astype一样。另外b=np.array(a,dtype=np.int16)中的np.int16是一样的float类型默认float64=float,int类型默认int64=int,转载 2020-11-18 15:47:10 · 2537 阅读 · 3 评论 -
Pytorch | Pytorch框架中模型和数据的gpu和cpu模式:model.to(device), model.cuda(), model.cpu(), DataParallel
参考:https://blog.csdn.net/iLOVEJohnny/article/details/106021547背景介绍我们在使用Pytorch训练时,模型和数据有可能加载在不同的设备上(gpu和cpu),在算梯度或者loss的时候,报错信息类似如下:RuntimeError: Function AddBackward0 returned an invalid gradient at index 1 - expected type torch.cuda.FloatTensor but转载 2020-11-18 14:01:45 · 3972 阅读 · 0 评论 -
pytorch中神经网络模型的初始化-保存-加载
https://blog.csdn.net/remanented/article/details/89161297一、打算开始训练自己的模型,希望能够得到较好的training_model,包括了对模型的初始化第一种from torch.nn import init#define the initial function to init the layer's parameters for the networkdef weigth_init(m): if isinstance(m原创 2020-11-18 11:01:21 · 1901 阅读 · 2 评论 -
Pytorch加载自己的数据集(使用DataLoader加载Dataset)
https://www.pytorchtutorial.com/pytorch-custom-dataset-examples/https://blog.csdn.net/l8947943/article/details/1037334731. 我们需要加载自己的数据集,使用Dataset和DataLoaderDataset:是被封装进DataLoader里,实现该方法封装自己的数据和标签。 DataLoader:被封装入DataLoader迭代器里,实现该方法达到数据的划分。2.Datas原创 2020-11-18 09:44:51 · 8817 阅读 · 0 评论 -
Ubuntu 18.04 安装显卡驱动
https://zhuanlan.zhihu.com/p/596189991. 使用 Ubuntu 软件仓库中的稳定版本安装1.1. 查看显卡硬件型号在终端输入:ubuntu-drivers devices,可以看到如下界面推荐安装的版本号是:nvidia-driver-455 - distro non-free recommended1.2. 开始安装如果同意安装推荐版本,那我们只需要终端输入:sudo ubuntu-drivers autoinstall就可以自动安装..原创 2020-11-14 17:57:16 · 737 阅读 · 0 评论 -
网络加密流量的相关研究
目录简介方向关键词网络加密流量相关研究加密流量识别类型加密流量识别方法加密流量识别使用的数据集VPN-nonVPN dataset (ISCXVPN2016)Tor-nonTor dataset (ISCXTor2016)相关文献综述文献数据集的文献关于VPN数据集的参考文献关于Tor数据集的参考文献参考链接:https://mathpretty.com/11401.html简介这一篇会对网络加密流量检测的相关研究做一个综述. 将各个方面进行简原创 2020-10-28 19:28:35 · 5998 阅读 · 5 评论 -
网络攻防实战--ARP欺骗
目录一、实验环境(实验设备)二、实验原理及内容以及实验小结㈠ARP欺骗⑴利用arpspoof工具和driftnet工具的arp欺骗实验2.利用arpspoof工具和driftnet工具进行ARP欺骗(截获图片)一、实验环境(实验设备)硬件:微型计算机软件:kali linux下的arpspoof工具和driftnet工具二、实验原理及内容以及实验小结㈠ARP欺骗⑴利用arpspoof工具和driftnet工具的arp欺骗实验①实验原理 1...转载 2020-10-27 20:34:37 · 1099 阅读 · 1 评论 -
最全的CSE-CIC-IDS2018 下载
前言复现论文,CSE-CIC-IDS2018全部有452.8GiB,所幸有处理好的CSV文件,2018的合计有6GiB左右;四处找寻不到,CSDN会员资源下载下来里面是不对的内容,没办法自己去官网下载,过程不易,特总结一下方法,以及分享我下载的2018数据集。我采用的下载办法,是用windows系统下的下载【1】官网下载AWS工具或者用我下载下来的(,windows64位)【2】 在aws的安装文件夹中打开cmd命令窗口,运行:...原创 2020-10-15 16:55:21 · 4073 阅读 · 9 评论 -
PyTorch 的 Autograd学习
https://zhuanlan.zhihu.com/p/69294347https://zhuanlan.zhihu.com/p/67184419原创 2020-10-08 22:01:34 · 150 阅读 · 0 评论 -
如何区分并记住常见的几种 Normalization 算法
神经网络中有各种归一化算法:Batch Normalization (BN)、Layer Normalization (LN)、Instance Normalization (IN)、Group Normalization (GN)。从公式看它们都差不多,如 (1) 所示:无非是减去均值,除以标准差,再施以线性映射。Batch Normalization (BN)# coding=utf8import torchfrom torch import nn# track_r...原创 2020-10-07 14:42:40 · 1638 阅读 · 0 评论 -
running_mean和running_var的计算方式
参考链接:https://www.johndcook.com/blog/standard_deviation/https://www.zhihu.com/question/314505455/answer/1025527665两种计算方差的公式第一种:第二种 :均值的计算方法在线计算附上代码:class RunningStat { public: RunningStat() : m_n(0) {} ..原创 2020-10-07 11:03:12 · 1121 阅读 · 0 评论 -
小样本数据集介绍
本篇对小样本学习常用数据集进行介绍,由于本人理解问题,可能还存在误差。1、OmniglotOmniglot数据集包含来自50个不同字母的1623个不同手写字符。每一个字符都是由20个不同的人通过亚马逊的 Mechanical Turk 在线绘制的。相当于1623个类,每类20个样本。对于one shot来说,support_num_per_class = 1,query_num_per_class= 19。每个图像都与笔画数据配对, 坐标序列为[x, y, t][x,y,t...转载 2020-10-06 20:41:39 · 4792 阅读 · 0 评论 -
元学习简单介绍
元学习在元学习过程中,模型在元训练集中学习不同的任务。在该过程中存在两种优化:学习新任务的学习者(器)和训练学习者的元学习者。元学习方法通常属于下面三个范畴中的一个:循环模型(recurrent model)、度量学习(metric learning)和学习优化器(learning optimizer)(三种元学习方法)。循环模型这种元学习方法训练一个循环模型(即LSTM),模型从数据集中获取序列输入,然后处理任务中新的输入。在图像分类设置中,这可能包括从(图像、标签)对数据集中获取序列输入,.原创 2020-10-06 20:14:23 · 1177 阅读 · 0 评论 -
pytorch从F.softmax(dim)
参考博客https://blog.csdn.net/xinjieyuan/article/details/105346381原创 2020-10-06 10:50:33 · 714 阅读 · 0 评论 -
使用对抗样本的攻击过程
参考文献:针对恶意代码分类模型的对抗技术研究1、首次提出了一种基于灰度图像的对抗样本攻击算法,生成可执行的对抗样本,用以攻击基于机器学习的以灰度图像为分类依据的恶意代码分类模型。本文首先以灰度图像为依据,修改了One Pixel Attack算法用以生成图像对抗样本,然后将图像对抗样本映射回代码形式,打包成为Android可运行程序,即生成的对抗样本可以通过程序的形式安装、运行。传播,具有现实的攻击意义。对上述算法进行实验验证。首先在Derbin样本集上进行以灰度图像为分类依据的恶意代码分类训练,以得到原创 2020-09-29 17:18:27 · 1422 阅读 · 1 评论 -
恶意软件检测技术综述
目录恶意软件检测技术综述摘要第一章绪论第二章理论准备2.1恶意软件检测技术与恶意软件检测器2.2恶意软件检测研究现状2.2.1基于异常的检测研究现状2.2.2基于签名的检测研究现状第三章从计算机系统结构看恶意软件检测第四章总结恶意软件检测技术综述摘要本文介绍了恶意软件、恶意软件探测技术和探测器的定义,以及研究它们的现实意义。概述了恶意软件探测技术的具体分类和各个类别的研究现状。结合研究现状,总结了软件探测器性能损耗高,覆盖范围有限的特点...转载 2020-09-29 15:15:26 · 6356 阅读 · 2 评论 -
NVIDIA驱动安装与卸载+ 查看内核版本信息+实时查看GPU信息+搭建多个Cuda环境
NVIDIA驱动安装与卸载:两种方式1.卸载掉原有驱动: sudo apt-get remove nvidia-* //若安装过其他版本或其他方式安装过驱动执行此项)2.给驱动run文件赋予执行权限: sudo chmod a+x NVIDIA-Linux-x86_64-440.31.run3.安装 ./NVIDIA-Linux-x86_64-440.31.run -no-x-check -no-nouveau-check -no-opengl-files//只有禁用opengl这样安原创 2020-09-28 21:16:28 · 2571 阅读 · 0 评论 -
Ubuntu中Failed to initialize NVML: Driver/library version mismatch问题的解决
目录问题描述问题根源解决方案问题描述nvidia-smi问题根源NVIDIA 内核驱动版本与系统驱动不一致解决方案以下是我的解决方案,卸载电脑驱动,重装415版本与nvidia 内核版本匹配输入下条命令,查看你的显卡驱动所使用的内核版本cat /proc/driver/nvidia/version可以看出Kernel Module 为415.27输入下条命令,查看电脑驱动cat /var/log/dpkg.log | grep n.转载 2020-09-28 09:44:23 · 1444 阅读 · 0 评论 -
Pycharm远程服务器的Path mapping
当我打开一个工程的时候,想要调用远程的服务器。我当时已经配置了Project Interpreter,而且Path mapping我当时设置的是一个tmp存储。然后无法运行。解决方法:本地工程是:pytorchtest,然后远程工程是:/Project/pytorchtest。需要pytorchtest里面的所有内容都上传到/Project/pytorchtest。这样在这两个之间做好映射,就可以。...原创 2020-09-28 09:35:07 · 9331 阅读 · 4 评论 -
了解Cookie(强烈推荐)
https://blog.csdn.net/f45056231p/article/details/88837058https://blog.csdn.net/playboyanta123/article/details/79464684目录Cookie的诞生Cookie的处理分为:服务器端的发送与解析发送cookiecookie 是怎么工作的?Cookie是由服务器端生成,发送给User-Agent,浏览器会将Cookie的key/value保存到某个目录下的文本文件内,下次原创 2020-09-27 19:56:35 · 272 阅读 · 0 评论 -
XSS(跨站脚本)漏洞详解
参考链接:https://blog.csdn.net/qq_35393693/article/details/86597707XSS的原理和分类跨站脚本攻击XSS(Cross Site Scripting),为了不和层叠样式表(Cascading Style Sheets, CSS)的缩写混淆,故将跨站脚本攻击缩写为XSS。恶意攻击者往Web页面里插入恶意Script代码,当用户浏览该页之时,嵌入其中Web里面的Script代码会被执行,从而达到恶意攻击用户的目的。XSS攻击针对的是用户层面的攻击!转载 2020-09-27 19:32:08 · 370 阅读 · 0 评论 -
cuda版本和NVIDIA兼容性问题
安装了cuda 10.2,结果告诉我不兼容,所以重新安装一下cuda 10.0http://chaofei.baiduux.com/h5/zh-lcf.html原创 2020-09-26 20:06:58 · 1791 阅读 · 0 评论 -
网络安全攻击防御体系
原创 2020-09-22 21:57:03 · 951 阅读 · 0 评论 -
网络安全攻击与防护
原创 2020-09-22 20:00:42 · 397 阅读 · 0 评论 -
初认联邦学习—背景和框架介绍
1 背景介绍1.1 人工智能的遇到的困境(1)数据孤岛问题。一个AI项目可能涉及多个领域,需要融合各个公司、各个部门的数据。(比如研究居民线上消费问题,需要各个消费平台的数据,可能还需要银行数据等等)但在现实中想要将分散在各地、各个机构的数据进行整合几乎是不可能的。(2)数据隐私问题。GDPR的出台,使得各方对数据所有权和隐私性的关注越来越多,对用户隐私和安全管理日趋严格,拿不到赖以生存的数据集。GDPR:2018年欧洲联盟出台《通用数据保护条例》。旨在保护用户的个人隐私和数据安全。用户可以删除转载 2020-09-22 09:58:26 · 1889 阅读 · 0 评论 -
联邦学习
联邦学习简介 联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。联邦学习的系统构架 以包含...转载 2020-09-22 09:22:04 · 456 阅读 · 0 评论 -
Meta Learning
原创 2020-09-21 17:14:11 · 97 阅读 · 0 评论 -
元学习:MAML,拟合y=a*sin(x+b)
参考链接:https://www.bilibili.com/read/cv4286995import numpy as npimport matplotlib.pyplot as pltpi = np.pidef sample_points(k):#k为对函数a*sin(x+b)在0到2π的采样点数 a,b = np.random.uniform(1,2,2) x = np.arange(0,2*pi,2*pi/k) y = a*np.sin(x+b) retur原创 2020-09-21 16:54:30 · 666 阅读 · 0 评论 -
深度学习模型压缩
前言目前在深度学习领域分类两个派别,一派为学院派,研究强大、复杂的模型网络和实验方法,为了追求更高的性能;另一派为工程派,旨在将算法更稳定、高效的落地在硬件平台上,效率是其追求的目标。复杂的模型固然具有更好的性能,但是高额的存储空间、计算资源消耗是使其难以有效的应用在各硬件平台上的重要原因。最近正好在关注有关深度学习模型压缩的方法,发现目前已有越来越多关于模型压缩方法的研究,从理论研究到平台实现,取得了非常大的进展。2015年,Han发表的Deep Compression是一篇对于模型压缩方法的转载 2020-09-18 21:14:55 · 200 阅读 · 0 评论
分享