Tendorflow 关于使用GPU的摘要

最常见的错误是:
1.内存错误
* failed to allocate 5.40G (5798205696 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY*
因为我在这里设置了args.gpu_memory_fraction=0.9,问题就是在这,相当于你告诉Tensorflow我分配你了6G显存(我的1060Ti内存为6G),那Tensorflow就想我要是检测不到5.4G的显存,老子就罢工!哼,真任性。这时就要改小args.gpu_memory_fraction了,设置你真正能为它分配的内存。

    # Start running operations on the Graph.
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction)
    sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False,allow_soft_placement=True))

2.Resource exhausted: OOM when allocating tensor with shape[14525,14000]

这个真的是内存不足,可以尝试减小batch_size大小,或者氪金再买个1080Ti?

阅读更多
个人分类: tensorflow
上一篇vs2013安装opencv运行报错fatal error LNK1112: 模块计算机类型“X86”与目标计算机类型“x64”冲突 发布博
下一篇Opencv Mat矩阵中size
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭