背景
有超过 100 万种物种面临灭绝,这凸显了保护物种多样性政策的迫切性。这里提出了一个基于强化学习的空间保护优先级的框架,该框架始终优于使用模拟和经验数据的当前最先进软件。
通过人工智能 对保护区进行优先排序(CAPTAIN-Conservation Area Prioritization Through Artificial Intelligence) ,量化了区域和生物多样性保护的成本和收益,然后进行权衡,允许探索多生物、多样性等指标
在有限的预算下,该模型比随机或简单的选择区域(例如基于物种丰富度)保护的物种要多得多。 CAPTAIN 使用经验数据实现了比软件更好的解决方案,更可靠地满足保护目标并生成更多可解释的优先级要求。
定期的生物多样性监测,即使科学调查存在一定程度的不准确,也能进一步衡量到改善生物多样性的结果。在瞬息万变和资源有限的世界中,人工智能有望改善生物和生态系统的保护和保证可持续利用。
框架
该框架基于对生物多样性及其随时间演变的空间显式模拟,以响应人为压力和气候变化
- 它是一个模拟系统,有点类似一个国家/一个岛屿等,由许多细胞组成,每个细胞都有许多不同物种的个体。一旦一个保护单元被识别和保护,它的人为干扰(例如,森林砍伐或海拖网)将立即降低到很低的水平,除了众所周知干扰的边缘效应。
- 所有模拟设置都提供了初始默认值,也可以自定义。模拟系统随着时间的推移而发展,并使用 RL 优化保护政策。训练模型后,可以基于模拟或经验数据评估模型性能。
- 使用经验数据,用的生物多样性和干扰数据取代来替代模拟系统。 将系统进化 (b) 与模拟和 AI 模块 (c) 相结合的分析流程图,以最大化选定结果(例如,物种丰富度)
- 该系统在两个时间点之间演变,考虑了几个与时间相关的变量:物种丰富度、种群密度、经济价值、系统发育多样性、人为干扰、气候和物种等级丰度
- 定期从系统中提取生物多样性特征,然后输入神经网络,它从系统的进化中学习,以确定最大化奖励的保护政策Reward,例如在固定预算内保护最大的物种多样性。参数x、z和y的向量分别代表神经网络的输入、隐藏层和输出的节点
监控
检测旨在跟踪生物多样性的结果:
- a全面定期监测(每个时间步长的物种存在和丰富度)
- b居民科学循环监测(物种存在/不存在,有错误)
- c全面的初始检测(开始时物种存在和丰富度)
- 随机保护(黑色)和CAPTAIN保护(蓝色)
结果分析
数据收集策略的影响
全面的定期监测(系统在每个时间步进行监测,包括物种存在和丰度)导致物种损失最小:它成功保护的物种平均比随机保护策略多 26%
优化目标权衡
优化目标的选择直接影响结果,如:基于商业价值目标(如木材价格)的物种损失最小化政策,往往会牺牲更多物种,以优先保护更少、高价值的物种。针对具有高经济价值的物种的保护的政策可能会对受保护物种的总丰富度、系统发育多样性甚至保护区的数量产生强烈的负面影响。
收益和损失
幸存下来的物种要么具有低弹性但分布广泛且种群规模大,要么具有高弹性但分布范围和种群规模小;幸存下来的物种要么具有低弹性但分布广泛且种群规模大,要么具有高弹性但分布范围和种群规模小
模拟的基准集合
Marxan进行适应性分析
模型
A biodiversity simulation framework
Aagent:
- 监测,提供有关系统生物多样性当前状态的信息;
- 保护,它使用该信息来选择保护区域免受人为干扰;
Action:
- protecting
Conservation planning within a reinforcement learning framewor
待续
nature论文地址:Improving biodiversity protection through artificial intelligence | Nature Sustainability