KL散度(Kullback-Leibler_divergence)
一. 概念
KL-divergence,俗称KL距离,常用来衡量两个概率分布的距离。
根据shannon的信息论,给定一个字符集的概率分布,我们可以设计一种编码,使得表示该字符集组成的字符串平均需要的比特数最少。假设这个字符集是X,对x∈X,其出现概率为P(x),那么其最优编码平均需要的比特数等于这个字符集的熵:
H(X)=∑x∈XP(x)log[1/P(x)]
在同样的字符集上,假设存在另一个概率分布Q(X)。如果用概率分布P(X)的最优编码(即字符x的编码长度等于log[1/P(x)]),来为符合分布Q(X)的字符编码,那么表示这些字符就会比理想情况多用一些比特数。KL-divergence就是用来衡
KL散度是衡量两个概率分布之间差异的度量,常用于信息论和机器学习。它描述了使用一个分布P的编码表示遵循另一分布Q的数据时,平均每个字符多消耗的比特数。KL散度总是非负的,只有当两个分布完全相同时才为0。它在实际应用中,如比较不同分类方法的性能,表现出不对称性。对称KL散度(Ds)通过取KL-Distance的平均来解决这一问题。
最低0.47元/天 解锁文章
7275

被折叠的 条评论
为什么被折叠?



