大数据表查询优化

1:索引,我们最先想到的就是创建索引,创建索引可以成倍的提升查询的效率,节省时间。但是如果数据量太过于巨大的时候,这个时候单纯的创建索引是无济于事的,我们知道假如特别是在大数据量中统计查询,就拿1000W数据来说吧,如果使用count函数的话,最少要50-100秒以上,当然如果你的服务器配置够高,处理够快,或许会少很多但是一样会超过10秒。 
单纯的建立索引是无济于事的。我们可以在创建索引的时候给索引加个属性,compress,这个属性可以将所创建的索引进行一个良好的归类,这样的话,查询速度会提升5-10倍,或者更高。但是唯一的缺点是,压缩索引只能手动创建,对于那些KEY是无法进行压缩的,因为KEY(主键)是自动创建的索引,compress必选的属性,一般默认是不创建。所以在创建压缩索引的时候,可以找其他的关键字段进行压缩,比如工单表里面的流水号 
2:尽量少的使用那些函数,比如 IS NUll;IS NOT NULL,IN;NOT IN等这样的匹配函数,可以使用符号程序进行操作 
3:尽量少使用子查询,如果你写个类,里面模仿子查询的效果,你就会发现,简直在要命,我们可以使用联合查询,或者是外连接查询,这样速度会比子查询快很多。 
4:在使用索引的时候,注意如下: 
Where子句中有!=将使索引失效 
select account_name from test where amount != 0 (不使用
select account_name from test where amount > 0 (使用

Where条件中对字段增加处理函数将不使用该列的索引 
select * from emp where to_char(hire_date,'yyyymmdd')='20080411' (不使用
select * from emp where hire_date = to_char('20080411','yyyymmdd') (使用

避免在索引列上使用IS NULL和 IS NOT NULL 
select * from emp where dept_code is not null (不使用
select * from emp where dept_code > 0 (使用

通配符% 的使用 
select * from emp where name like '%A' (不使用索引

select * from emp where name like 'A%' (使用索引)

oracle大数据查询实现优化

大数据量查询,对数据库开发者来说,性能问题往往是最需要费尽心机的,借此总结自己优化此类问题的心得与大家分享,以免大家走更多的弯路。

1.使用主键临时表

大数据量表关联查询,是性能开销的主要原因。通过主键创建临时表,搬迁关联所需主键数据往往是我们在查询时的主要手段,接下来我们就可以通过主键临时表分批关联其他大表的方式轻松、高性能的实现大数据量查询。

2.只查询一次大表

在编写大数据量查询程序时,对于大的数据表,尽可能减少对大数据表的访问次数,必要时,可以缓存大数据表的结果。

3.分批处理,提高并发性能

数据查询就可用性来说,最基本的是响应要及时;当然,最重要的是对整个系统的并发行影响,本人比较反对通过伪分批方式实现海量数据查询。

3.只提取你需要的查询列:

大数据量查询,往往都需要通过分批的方法实现取数,当我创建了主键临时表时,切忌照搬整张大表,只需要搬迁我们需要的主键信息到临时表即可,毕竟搬迁一张海量数据表会耗费大量磁盘IO,搬迁的列越少开销势必越小。


发布了31 篇原创文章 · 获赞 36 · 访问量 10万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 游动-白 设计师: 上身试试

分享到微信朋友圈

×

扫一扫,手机浏览