chen_holy
码龄7年
关注
提问 私信
  • 博客:174,248
    174,248
    总访问量
  • 108
    原创
  • 1,528,249
    排名
  • 31
    粉丝
  • 0
    铁粉

个人简介:“你要是愿意, 我就永远爱你”——王小波《爱你就像爱生命》

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2017-07-20
博客简介:

chen_holy的博客

查看详细资料
个人成就
  • 获得64次点赞
  • 内容获得5次评论
  • 获得191次收藏
创作历程
  • 111篇
    2019年
  • 2篇
    2017年
成就勋章
TA的专栏
  • 数据结构与算法
    10篇
  • AI
    57篇
  • 机器学习
    22篇
  • 深度学习
    21篇
  • tensorflow
    21篇
  • 编程
    73篇
  • Django REST framework
    2篇
  • Numpy
    11篇
  • scala
    2篇
  • 毕业设计
    1篇
  • python
    19篇
  • Pandas
    2篇
  • 推荐系统
    3篇
  • 计算机科学
    3篇
  • Matplotlib
    1篇
  • 正则表达式
    6篇
  • web服务器
    1篇
  • 有趣的世界
    1篇
  • 日常科学
    1篇
  • 梯度下降
    2篇
  • 模型训练
    7篇
  • 模型评估
    2篇
  • 数据读取
    3篇
  • 损失函数
    1篇
  • 视觉硬件
    1篇
  • OpenCV
  • 目标检测与关键点定位
    1篇
  • 概率论与数理统计
    1篇
兴趣领域 设置
  • 大数据
    flink
  • 人工智能
    opencv语音识别计算机视觉机器学习深度学习神经网络自然语言处理tensorflowpytorch图像处理nlp数据分析
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

笔记 :归纳总结 (一)

资料决策边界(decision boundary)logistic回归,以及决策边界与回归的区别吴恩达机器学习笔记16-决策边界(decision boundary)机器学习中线性模型和非线性的区别机器学习中线性模型和非线性的区别怎样区分线性和非线性线性模型线性分类器和非线性分类器机器学习之广义线性模型广义线性模型到底是个什么鬼?| 协和八逻辑回归(logistics re...
原创
发布博客 2019.08.21 ·
1426 阅读 ·
1 点赞 ·
0 评论 ·
21 收藏

笔记 - 归纳总结(二)

机器学习算法K近邻算法原理每个样本都能用最接近它的k个邻居代表流程计算目标与所有样本之间的距离,选出距离最小的前K个样本,K个样本中占比最高的类别即为目标类别KNN三要素K值的选取距离度量方式分类决策规则K值选取方式交叉验证K值对模型结果的影响较小的K值,减少训练误差,但容易过拟合较大的K值,减少泛化误差,但训练误差会上升分类决策规则...
原创
发布博客 2019.08.21 ·
527 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

笔记 - tensorflow中 Variable 与 get_variable 的用法

莫烦 scope 命名方法我们为什么要对变量命名举个例子:在迁移学习中我们是通过变量名加载相应的值# restore variables# redefine the same shape and same type for your variablesW = tf.Variable(np.arange(6).reshape((2, 3)), dtype=tf.float32, n...
原创
发布博客 2019.08.07 ·
607 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

笔记 - 卷积神经网络设计 理论部分(一)

思考1. 卷积神经网络如何减少参数量和计算量relu激活函数dropout使用1×1卷积核进行减少参数量和计算量对标准卷积的拆分(使用深度可分离卷积)2. 各类经典卷积网络的特点3. 卷积计算量的计算4. 注意区分1x1 PW conv 和 1x1 GConv 经典卷积网络LetNet通常 简单的分类网络结构:输入 - 卷积池化(层数未定) - 全连接(层数...
原创
发布博客 2019.07.17 ·
530 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

笔记 - 概率论:随机变量与独立同分布

参考文章总体与样本的理解从整体抽出一个个体,就是对总体X进行一次观察并记录结果。在相同条件下对总体进行n次独立重复观察。将n次观察结果按照试验顺序记为X1,X2,..,XnX1,X2,..,Xn。它们是相互独立的,且都是与X具有相同分布的随机变量。X1,X2,..,XnX1,X2,..,Xn称之为来自总体X的一个简单随机样本随机变量随机变量是指变量的值无法预先确定仅以一定的可能性(...
原创
发布博客 2019.07.09 ·
8600 阅读 ·
4 点赞 ·
0 评论 ·
8 收藏

笔记 - 数据结构与算法:单向链表

要实现两个部分:结点对象链表对象假设需求:节点实现要存储数据要存储下一个节点位置class Node(): def __init__(self, item): self.item = item self.next = None单链表实现class SingleLinkList(): def __init__(self): self._head = No...
原创
发布博客 2019.07.01 ·
206 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

笔记 - 数据结构与算法:顺序表

所以动态结构指的是能在表对象不改变的前提下对数据存储区域进行扩容的结构扩充的方式还有很多eg:每次增加当前容量的一半增加当前容量的3/4......
原创
发布博客 2019.07.01 ·
218 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

笔记 - 数据结构与算法:【算法的引入】如果 a+b+c=1000,且 a^2+b^2=c^2(a,b,c 为自然数),如何求出所有a、b、c可能的组合?

算法优化带来效率的提高
原创
发布博客 2019.07.01 ·
809 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

笔记 - 数据结构与算法:Python列表不同操作的时间效率

list添加元素注:把 test 统一改成 tfrom timeit import Timer单纯的生成list,还是list(range())最快list相加的另外一种方式extend和[1]+[2] 即两个列表直接相加要慢但好像extend消耗空间少insert 与 append...
原创
发布博客 2019.07.01 ·
247 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

笔记 - 服饰关键点检测:原理篇

数据集
原创
发布博客 2019.06.28 ·
1995 阅读 ·
1 点赞 ·
1 评论 ·
7 收藏

笔记 - 数据读取:TFRecords 内部多线程读取文件 (二)

对整个流程梳理具体分析在上篇笔记 - 数据读取:TFRecords 内部多线程读取文件 (一)正文...filename_queue = tf.train.string_input_producer(filenames)reader = tf.FixedLengthRecordReader(record_bytes=3073)key, value = reader.read...
原创
发布博客 2019.06.20 ·
226 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

笔记 - 数据读取:TFRecords 内部多线程读取文件 (一)

资料:Tensorflow高效读取数据tensorflow的数据输入TensorFlow和Keras解决大数据量内存溢出问题tensorflow的数据输入 - 屌都不会TensorFlow高效读取数据的方法Tensorflow TFRecords及多线程训练介绍 ——详细Google Protocol Buffer 的使用和原理《21个项目玩转深度学习:基于TensorFlow的实...
原创
发布博客 2019.06.20 ·
584 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

笔记 - 视觉硬件:内存条

资料:内存条-用最真实的视角带你了解内存条正文目录:频率时序频率cpu对内存访问的频率 简称内存的频率默认最高为2400MHZ,某些高频内存条,频率可达3600MHZ什么影响内存的频率内存颗粒的体质增加计算机访问内存速度的方法:换高频内存条+内存超频组双通道内存不是所有主板都只支持高频内存条Intel系列只有Z系与X系支持高频内存条B系与...
原创
发布博客 2019.06.19 ·
253 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

笔记 - 卷积网络:全连接 卷积核 池化核

总结:全连接侧重 特征的精确位置卷积层侧重 特征的相对位置思考:每次训练都能学到一样的局部特征吗,为什么卷积核一个卷积核,就是一个局部特征所以卷积层的输出会更少地依赖特征的精确位置(相比全连接层)为什么这么说:因为全连接层的权重和位置有着紧密的关联但卷积层的权重和特征本身紧密关联优点:计算量少,泛化能力高理解内在逻辑池化核一个过滤器作用:让特征...
原创
发布博客 2019.06.13 ·
2790 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

笔记 - 卷积网络:1×1卷积核

首先是卷积核的作用1.比全连接参数少很多的特征提取器2.数据通道增加或减少1x1卷积核与其他大小卷积核的不同用最少的参数实现数据通道地增加或减少减少数据通道的作用:减少接下来的计算量,减少参数other观点增加非线性相当于一个全连接网络我觉得不太像资料深度学习——1×1卷积核理解全 中文字幕 - 深度学习_吴恩达_DeepLearning.ai...
原创
发布博客 2019.06.13 ·
376 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

笔记 - 模型评估:K折交叉验证

一种数据利用率较高的模型训练评估方法模型训练评估模型超参的选择实现流程不唯一,主要体现在对数据的利用率上现在对模型进行训练,评估采用10折交叉验证方法,需要对模型训练10次,测试10次,计算10次相关指标将数据集切分成10份数据集,第一次保留第一份数据集为测试集,剩下的数据用来训练模型第二次保留第二份数据集为测试集,剩下的数据用来训练模型...资料:机器学习之模型选...
原创
发布博客 2019.06.12 ·
1191 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

笔记 - 深度学习脉络整理:2.损失函数

脉络结构1. 结构2. 损失3. 优化思考:为什么使用softmaxsoftmax存在的问题交叉熵损失的含义题外话:清楚原理之后,可以对它进行改进使用 softmax 的时候,有一个默认的前提,就是每个物体只属于一类比如人脸识别,每张脸只能对应一个人思考:sigmod二分类的Loss,与softmax多分类的Loss 的区别sigmod 与...
原创
发布博客 2019.06.12 ·
205 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

笔记 - 深度学习脉络整理:1.基础结构单元

资料:深度学习基础课程深度学习大讲堂 - 首期第三讲:深度学习基础概括图基础结构单元所有op得知道是什么意思全连接层的op卷积层的op…激活函数为什么说激活函数是神经网络非线性性的来源激活函数的取值范围激活函数的导数损失函数调整网络:调网络结构调损失函数损失函数的物理意义损失函数的导数网络训练误差反向传播算法如何做参数...
原创
发布博客 2019.06.12 ·
754 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

笔记 - 算法与数据结构:链表交换相邻元素

class LNode(): def __init__(self, data=None): self.x = data self.next = Nonedef swapPairs(head): pre = head while pre.next and pre.next.next: a = pre.next ...
原创
发布博客 2019.06.11 ·
292 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

笔记 - 算法与数据结构:反转链表

class LNode: def __init__(self, x=None): self.x = x self.next = Nonedef Reverse(first): cur, pre = first, None while cur: cur.next, pre, cur = pre, cur, cur.next...
原创
发布博客 2019.06.11 ·
166 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多