hdu/hdoj 1007 Quoit Design (最近点对问题)

原文地址点击打开链接


在二维平面上的n个点中,如何快速的找出最近的一对点,就是最近点对问题。

    一种简单的想法是暴力枚举每两个点,记录最小距离,显然,时间复杂度为O(n^2)。

    在这里介绍一种时间复杂度为O(nlognlogn)的算法。其实,这里用到了分治的思想。将所给平面上n个点的集合S分成两个子集S1和S2,每个子集中约有n/2个点。然后在每个子集中递归地求最接近的点对。在这里,一个关键的问题是如何实现分治法中的合并步骤,即由S1和S2的最接近点对,如何求得原集合S中的最接近点对。如果这两个点分别在S1和S2中,问题就变得复杂了。

    为了使问题变得简单,首先考虑一维的情形。此时,S中的n个点退化为x轴上的n个实数x1,x2,...,xn。最接近点对即为这n个实数中相差最小的两个实数。显然可以先将点排好序,然后线性扫描就可以了。但我们为了便于推广到二维的情形,尝试用分治法解决这个问题。

    假设我们用m点将S分为S1和S2两个集合,这样一来,对于所有的p(S1中的点)和q(S2中的点),有p<q。

    递归地在S1和S2上找出其最接近点对{p1,p2}和{q1,q2},并设

d = min{ |p1-p2| , |q1-q2| }

    由此易知,S中最接近点对或者是{p1,p2},或者是{q1,q2},或者是某个{q3,p3},如下图所示。



 

    如果最接近点对是{q3,p3},即|p3-q3|<d,则p3和q3两者与m的距离都不超过d,且在区间(m-d,d]和(d,m+d]各有且仅有一个点。这样,就可以在线性时间内实现合并。

    此时,一维情形下的最近点对时间复杂度为O(nlogn)。

    在二维情形下,类似的,利用分治法,但是难点在于如何实现线性的合并?



 

    由上图可见,形成的宽为2d的带状区间,最多可能有n个点,合并时间最坏情况下为n^2,。但是,P1和P2中的点具有以下稀疏的性质,对于P1中的任意一点,P2中的点必定落在一个d X 2d的矩形中,且最多只需检查六个点(鸽巢原理)。

    这样,先将带状区间的点按y坐标排序,然后线性扫描,这样合并的时间复杂度为O(nlogn),几乎为线性了。




/**
最近点对问题,时间复杂度为O(n*logn*logn)
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
const double INF = 1e20;
const int N = 100005;

struct Point
{
    double x;
    double y;
}point[N];
int n;
int tmpt[N];

bool cmpxy(const Point& a, const Point& b)
{
    if(a.x != b.x)
        return a.x < b.x;    
    return a.y < b.y;
}

bool cmpy(const int& a, const int& b)
{
    return point[a].y < point[b].y;
}

double min(double a, double b)
{
    return a < b ? a : b;
}

double dis(int i, int j)
{
    return sqrt((point[i].x-point[j].x)*(point[i].x-point[j].x)
                + (point[i].y-point[j].y)*(point[i].y-point[j].y));
}

double Closest_Pair(int left, int right)
{
    double d = INF;
    if(left==right)
        return d;
    if(left + 1 == right)
        return dis(left, right);
    int mid = (left+right)>>1;
    double d1 = Closest_Pair(left,mid);
    double d2 = Closest_Pair(mid,right);
    d = min(d1,d2);
    int i,j,k=0;
    //分离出宽度为d的区间
    for(i = left; i <= right; i++)
    {
        if(fabs(point[mid].x-point[i].x) <= d)
            tmpt[k++] = i;
    }
    sort(tmpt,tmpt+k,cmpy);
    //线性扫描
    for(i = 0; i < k; i++)
    {
        for(j = i+1; j < k && fabs(point[tmpt[j]].y-point[tmpt[i]].y)<d; j++)  //在这个地方加一个fabs稍稍快那么一点点
        {
            double d3 = dis(tmpt[i],tmpt[j]);
            if(d > d3)
                d = d3;
        }
    }
    return d;
}


int main()
{
    while(true)
    {
        scanf("%d",&n);
        if(n==0)
            break;
        for(int i = 0; i < n; i++)
            scanf("%lf %lf",&point[i].x,&point[i].y);
        sort(point,point+n,cmpxy);
        printf("%.2lf\n",Closest_Pair(0,n-1)/2);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值