opencv中的rectangle 

本文介绍如何使用OpenCV中的rectangle函数来绘制一个矩形。该函数可以指定图像、矩形的两个对角顶点坐标、颜色及填充效果等参数。
摘要由CSDN通过智能技术生成

用OpenCV的函数 rectangle 绘 矩形

 

rectangle( rook_image,
           Point( 0, 7*w/8.0 ),
           Point( w, w),
           Scalar( 0, 255, 255 ),
           -1,
           8 );

 

 

最后是函数:rectangle:rectangle <> (我们并没有为这家伙创建特定函数)。请注意:

矩形将被画到图像 rook_image 上

矩形两个对角顶点为 Point( 0, 7*w/8.0 ) 和 Point( w, w)

矩形的颜色为 Scalar(0, 255, 255) ,既BGR格式下的 黄色

由于线粗为 -1, 此矩形将被填充

 
### 回答1: 我可以提供一段简单的Python代码来帮助您实现OpenCV圆形检测。import cv2 import numpy as np # 读取图像 img = cv2.imread('image.jpg') # 转换为灰度图像 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 检测圆形 circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1.2, 100) # 绘制 if circles is not None:     circles = np.round(circles[0, :]).astype('int')     for (x, y, r) in circles:         cv2.circle(img, (x, y), r, (0, 255, 0), 4)     cv2.imshow('detected circles', img) cv2.waitKey(0) ### 回答2: OpenCV是一个开源的计算机视觉库,可以用于图像处理和计算机视觉任务。在Python中使用OpenCV进行圆形检测的代码如下: ```python import cv2 import numpy as np # 读取图像 image = cv2.imread('image.jpg') # 将图像转换为灰度图像 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 使用霍夫圆检测进行圆形检测 circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, 100, param1=50, param2=30, minRadius=0, maxRadius=0) # 确保检测到至少一个圆 if circles is not None: # 将圆的坐标和半径转换为整数 circles = np.round(circles[0, :]).astype("int") # 遍历圆并绘制出来 for (x, y, r) in circles: cv2.circle(image, (x, y), r, (0, 255, 0), 4) # 显示图像 cv2.imshow("Detected Circles", image) cv2.waitKey(0) ``` 这段代码首先使用`cv2.imread`函数读取一张图像。然后,通过调用`cv2.cvtColor`将图像转换为灰度图像。接下来,使用`cv2.HoughCircles`进行圆形检测。函数的参数包括灰度图像,检测方法,像素分辨率,两个阈值参数,以及最小半径和最大半径参数。 如果找到了至少一个圆,我们将其坐标和半径转换为整数,并使用`cv2.circle`函数绘制出来。最后,通过调用`cv2.imshow`显示图像,并通过`cv2.waitKey(0)`等待用户按下任意键关闭图像窗口。 ### 回答3: OpenCV是一个广泛使用的计算机视觉库,可以用于处理图像和视频。在Python中使用OpenCV进行圆形检测的代码如下: 首先,导入必要的库: ```python import cv2 import numpy as np ``` 然后,读取图像并将其转换为灰度图像: ```python image = cv2.imread('image.jpg') gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) ``` 接下来,使用霍夫圆变换检测图像中的圆形: ```python circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1.2, minDist=100) ``` 这里的参数解释如下: - `gray`:输入的灰度图像 - `cv2.HOUGH_GRADIENT`:使用霍夫梯度法进行圆形检测 - `1.2`:表示圆心之间的最小距离,这个值越小,检测到的圆形数量越多 - `minDist`:两个圆之间的最小距离,如果设置得太小,可能会将相邻的圆误认为一个圆 检测到的圆形结果存储在`circles`变量中,是一个三维数组,每个圆用一个包含三个值的一维数组表示: ```python if circles is not None: circles = np.round(circles[0, :]).astype("int") for (x, y, r) in circles: cv2.circle(image, (x, y), r, (0, 255, 0), 4) cv2.rectangle(image, (x - 5, y - 5), (x + 5, y + 5), (0, 128, 255), -1) ``` 这段代码首先将检测到的圆的坐标和半径进行四舍五入并转换为整数型,然后使用`cv2.circle`函数在原始图像上绘制圆形,使用`cv2.rectangle`函数绘制出圆形的外接矩形。 最后,显示结果图像: ```python cv2.imshow("Circle Detection", image) cv2.waitKey(0) cv2.destroyAllWindows() ``` 以上就是OpenCV圆形检测的Python代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值