过拟合和欠拟合
过拟合:在训练模型中表现的过于优越,导致验证集和测试集上表现不佳
过拟合就是学习到了很多没有必要的特征,导致神经网络为了更好的降低loss
只能被迫学习这些特征来区分检测目标。
总结:过拟合就是训练效果很好,测试效果很差,原因参数过多
欠拟合:训练样本提取的特征比较少,导致训练出来的模型不能很好的匹配
本文探讨了深度学习中的两种常见问题——过拟合和欠拟合。过拟合表现为模型在训练集上表现优异,但在验证集和测试集上表现不佳,原因是学习了过多无关特征。欠拟合则是由于训练样本特征不足,导致模型无法有效匹配数据。
过拟合和欠拟合
过拟合:在训练模型中表现的过于优越,导致验证集和测试集上表现不佳
过拟合就是学习到了很多没有必要的特征,导致神经网络为了更好的降低loss
只能被迫学习这些特征来区分检测目标。
总结:过拟合就是训练效果很好,测试效果很差,原因参数过多
欠拟合:训练样本提取的特征比较少,导致训练出来的模型不能很好的匹配

被折叠的 条评论
为什么被折叠?