深度学习总结

本文探讨了深度学习中的两种常见问题——过拟合和欠拟合。过拟合表现为模型在训练集上表现优异,但在验证集和测试集上表现不佳,原因是学习了过多无关特征。欠拟合则是由于训练样本特征不足,导致模型无法有效匹配数据。

过拟合和欠拟合
过拟合:在训练模型中表现的过于优越,导致验证集和测试集上表现不佳
过拟合就是学习到了很多没有必要的特征,导致神经网络为了更好的降低loss
只能被迫学习这些特征来区分检测目标。
总结:过拟合就是训练效果很好,测试效果很差,原因参数过多

欠拟合:训练样本提取的特征比较少,导致训练出来的模型不能很好的匹配

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值