目标检测的数据集有三种:voc,coco,yolo
问题一:
SSD里面,每个位置需要c+4个滤波器,每个框都会计算出他的分数和bounding boxs的位置,这个叫滤波器,也可以叫卷积核。
问:为什么要进行C+4次滤波,意思是这类值的产生不是一次滤波就会计算出的吗?
答:因为算四个偏移量,中心点到框的上下左右的偏移量
问:所以要计算次数加四,但是这种计算用卷积一次不就行的吗,为啥叫c+4个滤波器呢?意思是用c+4次滤波的来的吗,印象中是每滤波一次都要计算一次这四个值
答:(c+4)*K是卷积核个数
问:那么c个类别和4个信息是这c+4个卷积核得来的吗?
答:是的,输出道数等于卷积核通道数
答:是最后这些卷积核卷积得到的特征图得来的,实际上他们有两个分支,一个用kc,一个用4k。一个分支做的是回归,一个分支做的是分类
问:那理论上是不是合起来也可以,就像yolo那样
答:应该
该篇博客探讨了目标检测技术,涉及SSD模型中C+4个滤波器的作用,以及目标检测数据集voc,coco,yolo。讨论了在Windows环境下运行FastR-CNN的错误,Faster R-CNN中微调和交替训练的理解,以及NMS在RPN后的应用。还提到了模型训练中遇到的CUDA和GPU资源问题,以及如何在CPU上加载模型。博客中还解答了YOLO、Faster R-CNN、ResNet等模型的相关疑问,包括卷积和池化操作的影响,以及使用验证集而非测试集的准确性问题。
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



