车娜希n
码龄5年
关注
提问 私信
  • 博客:143,915
    问答:103
    144,018
    总访问量
  • 65
    原创
  • 1,257,411
    排名
  • 168
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2019-10-22
博客简介:

chenaxin的博客

查看详细资料
个人成就
  • 获得155次点赞
  • 内容获得48次评论
  • 获得435次收藏
创作历程
  • 12篇
    2021年
  • 56篇
    2020年
成就勋章
TA的专栏
  • 论文解读
    62篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

176人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

1st Place Solutions for UG2+ Challenge 2021 - (Semi-) supervised Face detection in the low light con

论文地址:https://arxiv.org/pdf/2107.00818.pdf摘要在本技术报告中,我们简要介绍了我们的团队“TAAI”解决CVPR 2021中UG2+挑战的(低)光条件下半监督人脸检测的解决方案。通过使用流行的图像增强方法和图像变换方法进行一些实验,我们将弱光图像和正常图像拉到一个更接近的区域。并且观察到使用这些数据进行训练可以获得更好的性能。我们还采用了几种流行的对象检测框架,例如检测器、级联RCNN和大型主干网(如Swin transformer)。最后,我们整合了几个模型,这些
翻译
发布博客 2021.12.26 ·
855 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

CenterFace: Joint Face Detection and Alignment Using Face as Point

摘要  无约束环境下的人脸检测和对齐通常部署在内存有限、计算能力低的边缘设备上。本文提出了一种称为(CenterFace)的单阶段方法,可以实时快速、高精度地同时预测人脸边框和特征点位置。所提出的方法也属于无锚类。这是通过以下方法实现的:(a)通过语义地图学习人脸存在的概率(b)学习边界框、偏移量和可能包含人脸的每个位置的五个特征点。具体地说,该方法可以在单个CPU内核上实时运行,使用NVIDIA 2080TI以200 FPS的速度处理VGA分辨率图像,并且可以同时实现更高的精度(Wider Face V
原创
发布博客 2021.11.13 ·
3002 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

ckpt转pb

有时需要将tensorflow训练得到的ckpt固化成pb使用。Tensorflow提供了相关的固化命令脚本,下面是我搜集到的转换步骤。参考https://www.yanxishe.com/columnDetail/15278一、tensorflow保存下的内容用 tf.train.Saver.save() 方式保存下来的checkpoint会产生四个文件:checkpoint记录了部分已存储和最近存储的模型:model_checkpoint_path: “mtcnn-3000000”all_
转载
发布博客 2021.09.10 ·
489 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Focal Loss for Dense Object Detection

论文地址:https://arxiv.org/abs/1708.02002摘要  迄今为止,最高精度的物体检测器是基于由R-CNN推广的two-stage方法,其中分类器被应用于候选物体位置的稀疏集合。相比之下,在可能的物体位置的规则密集采样中应用的单级检测器具有更快和更简单的潜力,但是迄今为止已经落后于两级检测器的精度。在本文中,我们调查为什么会出现这种情况。我们发现在密集检测器的训练过程中遇到的极端前景-背景类不平衡是主要原因。我们建议通过重塑标准交叉熵损失来解决这种类别不平衡,这样它就降低了分配给
原创
发布博客 2021.06.29 ·
1255 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

CBAM: Convolutional Block Attention Module

摘要  我们提出卷积块注意模块(CBAM),一个简单而有效的前馈卷积神经网络的注意模块。给定一个中间特征图,我们的模块沿着两个独立的维度(通道和空间)依次推断注意力权重,然后将注意力图乘以输入特征图,以进行自适应特征细化。因为CBAM是一个轻量级的通用模块,它可以无缝集成到任何CNN架构中,开销可以忽略不计,并且可以与基本CNN一起进行端到端训练。我们通过在ImageNet-1K、MS COCO检测和VOC 2007检测数据集上的大量实验来验证我们的CBAM。我们的实验表明,各种模型在分类和检测性能上的改
原创
发布博客 2021.06.21 ·
394 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Qt小技巧

保留位数1、QString str = QString::number(num, ‘f’, 2);2、str.sprintf("%'09.2f",num);用0补齐,位宽为9,保留2位小数
原创
发布博客 2021.06.09 ·
168 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

C++之Lambda表达式

1. 概述C++ 11 中的 Lambda 表达式用于定义并创建匿名的函数对象,以简化编程工作。Lambda 的语法形式如下:[函数对象参数] (操作符重载函数参数) mutable 或 exception 声明 -> 返回值类型 {函数体}可以看到,Lambda 主要分为五个部分:[函数对象参数]、(操作符重载函数参数)、mutable 或 exception 声明、-> 返回值类型、{函数体}.2. Lambda 语法分析2.1 [函数对象参数]标识一个 Lambda 表达式的
转载
发布博客 2021.06.08 ·
153 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

arcloss人脸识别训练不收敛

发布问题 2021.05.19 ·
1 回答

安装pysider2

会出现版本问题,自己指定版本即可pip install -i https://mirrors.aliyun.com/pypi/simple pyside2==5.14.0
原创
发布博客 2021.05.13 ·
298 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

The Devil of Face Recognition is in the Noise

摘要人脸识别数据集的规模越来越大,这使得我们能够训练用于人脸识别的强卷积网络。虽然已经设计了各种架构和损失函数,但我们对现有数据集固有的标签噪声的来源和后果的理解仍然有限。我们做出了以下贡献:1)我们贡献了流行人脸数据库的清洁子集,即MegaFace和MS-Celebe-1M数据集,并构建了一个新的大规模噪声控制的IMDb人脸数据集。2)利用原始数据集和清洗后的子集,我们对MegaFace和MS-Cele1m的标签噪声特性进行了剖析和分析。我们表明,要达到干净子集产生的相同精度,需要多几个数量级的样本。3
原创
发布博客 2021.05.13 ·
362 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

(DeepID2)Deep Learning Face Representation by Joint Identification-Verification

https://arxiv.org/pdf/1406.4773.pdf摘要  人脸识别的关键挑战是开发有效的特征表示,以减少同一人之间的差异,同时扩大不同人之间的差异。在本文中,我们证明了通过深度学习和使用人脸识别和验证信号作为监督可以很好地解决这个问题。深度识别验证功能(DeepID2)是通过精心设计的深度卷积网络来学习的。人脸识别任务通过将从不同身份提取的深度ID2分开来增加人与人之间的差异,而人脸验证任务通过将从相同身份提取的深度ID2拉到一起来减少人与人之间的差异,这两者对于人脸识别都是必不可少
原创
发布博客 2021.05.11 ·
485 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Squeeze-and-Excitation Networks

摘要卷积神经网络建立在卷积运算的基础上,通过融合局部感受野内的空间信息和通道信息来提取信息特征。为了提高网络的表示能力,许多现有的工作已经显示出增强空间编码的好处。在这项工作中,我们专注于通道,并提出了一种新颖的架构单元,我们称之为“Squeeze-and-Excitation”(SE)块,通过显式地建模通道之间的相互依赖关系,自适应地重新校准通道式的特征响应。通过将这些块堆叠在一起,我们证明了我们可以构建SENet架构,在具有挑战性的数据集中可以进行泛化地非常好。关键的是,我们发现SE块以微小的计算成本
原创
发布博客 2021.04.07 ·
10880 阅读 ·
2 点赞 ·
0 评论 ·
56 收藏

MobileFaceNets: Efficient CNNs for Accurate Real- Time Face Verification on Mobile Devices

摘要  我们展示了一类极其高效的CNN模型MobileFaceNets,它使用不到100万个参数,专门为移动和嵌入式设备上的高精度实时人脸验证而定制。我们首先简单分析了普通移动网络在人脸验证方面的弱点。我们专门设计的手机已经很好地克服了这个弱点。在相同的实验条件下,我们的MobileFaceNets获得了显著更高的精度,以及比MobileNetV2高出2倍以上的实际加速。经过ArcFace loss在精致的MS-Celebe-1M上的训练,我们4.0MB大小的单个MobileFaceNet在LFW上实现了
原创
发布博客 2021.03.25 ·
788 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

《中国通史》纪录片100集笔记(持更)

注:本人是从看了殷商兴亡开始才有做笔记的打算,然鹅前面六集忘光光了,强迫症使我想要整齐的笔记,故前六集借鉴了豆瓣上的一个笔记。https://movie.douban.com/review/8457535/侵删1.中华道路主要讲述中国古代思想发展历程及中华民族走向统一的过程,中心思想是探索中华道路中儒家思想的引领作用及各民族集大统的客观规律。知识点:1.百家争鸣:法家墨子兼爱非攻,儒家孔子亚圣荀子王阳明阳明,心法、仁爱、尊卑有序,道家老子庄子无为;2.儒学完善历程:儒学、刘邦建立汉王朝孔子祭祀
原创
发布博客 2020.12.04 ·
93090 阅读 ·
135 点赞 ·
40 评论 ·
273 收藏

Mask R-CNN

https://arxiv.org/abs/1703.06870摘要我们提供了一个概念简单、灵活、通用的对象实例分割框架。我们的方法有效地检测图像中的目标,同时为每个实例生成高质量的分割掩模。该方法被称为Mask R-CNN,它扩展了Faster R-CNN,增加了一个用于预测对象蒙版的分支,与现有的用于边界盒识别的分支并行。Mask R-CNN是简单的训练,只增加一个小开销更快的R-CNN,运行在5帧每秒。此外,Mask R-CNN很容易推广到其他任务,例如,让我们在相同的框架下估计人体姿势。我们展示
原创
发布博客 2020.10.25 ·
483 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Inception-v4,Inception-ResNet and the Impact of Residual Connections on Learning

论文链接:https://arxiv.org/pdf/1602.07261.pdfhttps://arxiv.org/pdf/1602.07261v1.pdf摘要近些年,超深度卷积网络成为图像识别领域的核心算法。其中,Inception结构在图像分类中表现优秀,并且计算代价很低。最近,残差与更加传统的结构相结合,在ILSVRC挑战中获得Start-of-art的结果(与Inception-v3)的分类精度差不多。那么,是不是结合残差连接与Inception结构能够产生更好的结果。因此,我们给出了充足的
原创
发布博客 2020.10.24 ·
386 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

(FPN)Feature Pyramid Networks for Object Detection

摘要特征金字塔是识别系统中用于检测不同尺度目标的基本组件。但最近的深度学习目标检测器已经避免了金字塔表示,部分原因是它们是计算和内存密集型的。在本文中,我们利用深度卷积网络内在的多尺度、金字塔分级来构造具有很少额外成本的特征金字塔。开发了一种具有横向连接的自顶向下架构,用于在所有尺度上构建高级语义特征映射。这种称为特征金字塔网络(FPN)的架构在几个应用程序中作为通用特征提取器表现出了显著的改进。在一个基本的Faster R-CNN系统中使用FPN,没有任何不必要的东西,我们的方法可以在COCO检测基准数
原创
发布博客 2020.10.23 ·
366 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Focal Loss for Dense Object Detection

摘要迄今为止最高精度的物体检测器是由两级组成的检测器,典型代表是R-CNN,其中R-CNN的分类器被应用于有很少元素的预选框集。相反,一级检测器被更加广泛地使用,密集的区域预选使网络有可能变得更快更简单,但到目前为止,其检测的准确性仍落后于两级检测器。在本文中,我们讨论了为什么会出现这样的情况。我们发现在训练密集检测器的过程中遇到的极端的前景 - 背景类不平衡是造成一级检测器准确性较差的主要原因。我们提出解决这一类不平衡问题的方法:通过重塑标准交叉熵损失,以降低分配给分类良好的样本的损失。在训练阶段,我们
原创
发布博客 2020.10.22 ·
2287 阅读 ·
2 点赞 ·
0 评论 ·
8 收藏

(Inceptionv3)Rethinking the Inception Architecture for Computer Vision

翻译论文汇总:https://github.com/SnailTyan/deep-learning-papers-translationRethinking the Inception Architecture for Computer Vision摘要  对许多任务而言,卷积网络是目前最新的计算机视觉解决方案的核心。从2014年开始,深度卷积网络开始变成主流,在各种基准数据集上都取得了实质性成果。对于大多数任务而言,虽然增加的模型大小和计算成本都趋向于转化为直接的质量收益(只要提供足够的标注数据去训
原创
发布博客 2020.10.21 ·
455 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

SSD:SingleShot MultiBox Detector

http://noahsnail.com/2017/12/11/2017-12-11-Single%20Shot%20Multi%20Box%20Detector论文翻译——中英文对照/摘要我们提出了一种使用单个深度神经网络来检测图像中的目标的方法。我们的方法命名为SSD,将边界框的输出空间离散化为不同长宽比的一组默认框和并缩放每个特征映射的位置。在预测时,网络会在每个默认框中为每个目标类别的出现生成分数,并对框进行调整以更好地匹配目标形状。此外,网络还结合了不同分辨率的多个特征映射的预测,自然地处理各
原创
发布博客 2020.10.21 ·
189 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多